{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " Try in Google Colab\n", " \n", " \n", " \n", " \n", " Share via nbviewer\n", " \n", " \n", " \n", " \n", " View on GitHub\n", " \n", " \n", " \n", " \n", " Download notebook\n", " \n", "
\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# **FiftyOne Heatmaps**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Learning how to use heatmaps in FiftyOne and a pose estimation example" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A basic heatmap" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ",\n", " 'heatmap2': ,\n", "}>\n" ] } ], "source": [ "import cv2\n", "import numpy as np\n", "\n", "import fiftyone as fo\n", "\n", "# Example heatmap\n", "map_path = \"/tmp/heatmap.png\"\n", "map = np.random.randint(256, size=(128, 128), dtype=np.uint8)\n", "cv2.imwrite(map_path, map)\n", "\n", "sample = fo.Sample(filepath=\"/path/to/image.png\")\n", "sample[\"heatmap1\"] = fo.Heatmap(map_path=map_path)\n", "sample[\"heatmap2\"] = fo.Heatmap(map=map)\n", "\n", "print(sample)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setting up [SWAHR-HumanPose](https://github.com/greatlog/SWAHR-HumanPose/tree/master) Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is highly suggested that you use an venv such as conda to set up a seperate enviroment for the following. Refer to [this README](https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation/blob/master/README.md) for trouble shooting" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!git clone https://github.com/greatlog/SWAHR-HumanPose.git" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Download the model linked [here](https://drive.google.com/drive/folders/13FFvwK7bDZLD4H_toueopbLhJqFjimlu), I used pose_higher_hrnet_w32_512.pth, make sure to place in the ./models dir in the SWAHR repo" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# COCOAPI=/path/to/clone/cocoapi\n", "!git clone https://github.com/cocodataset/cocoapi.git $COCOAPI\n", "!cd $COCOAPI/PythonAPI\n", "# Install into global site-packages\n", "!make install\n", "# Alternatively, if you do not have permissions or prefer\n", "# not to install the COCO API into global site-packages\n", "!python3 setup.py install --user" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# CROWDPOSE=/path/to/clone/crowdpose\n", "!git clone https://github.com/Jeff-sjtu/CrowdPose.git $CROWDPOSE\n", "!cd $CROWDPOSE/PythonAPI\n", "# Install into global site-packages\n", "!make install\n", "# Alternatively, if you do not have permissions or prefer\n", "# not to install the CROWDPOSE API into global site-packages\n", "!python3 setup.py install --user\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally you may need to roll back some packages, namely numpy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip3 install numpy==1.20.0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generating Heatmaps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use the [tools/dist_inference.py](https://github.com/greatlog/SWAHR-HumanPose/blob/master/tools/dist_inference.py) script to generate our heatmaps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### File changes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make these changes to the appropriate files:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "#Line 42 in tools/dist_inference.py add make_heatmaps\n", "from utils.vis import draw_skeleton, make_heatmaps" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Line 196 in tools/dist_inference.py add the following block\n", " images,heatmaps = make_heatmaps(image,final_heatmaps[0])\n", " master_heatmap = heatmaps[0]\n", " for x in heatmaps:\n", " master_heatmap = np.maximum(master_heatmap, x)\n", " resized_m_heatmap = cv2.resize(master_heatmap,(image.shape[1],image.shape[0]))\n", " cv2.imwrite(\n", " os.path.join(save_dir, \"{}_heatmap.png\".format(image_name)),\n", " resized_m_heatmap\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Line 84 in lib/utils/vis.py add a extra return variable heatmaps\n", "return image_grid, heatmaps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With our model fully set up to generate and save some heatmaps, we can navigate to the SWAHR repo and run the following command" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#In terminal in SWAHR repo\n", "!python3 tools/dist_inference.py --world_size 1 --img_dir ~/fiftyone/quickstart/data/\n", "--save_dir output_quick --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml\n", "TEST.MODEL_FILE models/pose_higher_hrnet_w32_512.pth TEST.SCALE_FACTOR '[0.5, 1.0, 2.0]'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lets load our heatmaps in and visualize!" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset already downloaded\n", "Loading 'quickstart'\n", " 100% |█████████████████| 200/200 [2.1s elapsed, 0s remaining, 96.2 samples/s] \n", "Dataset 'quickstart' created\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "
\n", " \n", "
\n", " \n", "
\n", "\n", "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Could not connect session, trying again in 10 seconds\r\n", "\n" ] } ], "source": [ "import os\n", "import numpy as np\n", "import fiftyone as fo\n", "import fiftyone.zoo as foz\n", "\n", "\n", "dataset = foz.load_zoo_dataset(\"quickstart\")\n", "session = fo.launch_app(dataset)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.compute_metadata()\n", "\n", "for sample in dataset:\n", " filepath = sample.filepath\n", " base_name = os.path.basename(filepath)\n", " name, extension = os.path.splitext(base_name) \n", " #print(\"./SWAHR-HumanPose/output_quick/\" + name + \"_heatmap.png\")\n", " heatmap = fo.Heatmap(map_path=\"/path/to/SWAHR-HumanPose/output_quick/\" + name + \"_heatmap.png\")\n", "\n", " sample[\"heatmap\"] = heatmap\n", " sample.save()\n", "\n", "session = fo.launch_app(dataset)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### FiftyOne Heatmap Example Output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Sample Image](heatmaps/heatmap.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model Output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Out Image](heatmaps/heat_out.png)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 2 }