Tree Based Methods in Machine Learning

Tugrul Hasan Karabulut 1

https://github.com/tugrulhkarabulut

Contents

1__Introductionl 1
2__Decision Trees| 2
2.1 What is a Decision Tree?l 2
2.2 How to Build a Decision Treel 4

[3 Ensemble Learning| 6
Bagging] 7

3.2 Random Forest|o 7
3.3 Boosting]. 8
B4 AdaBoost] 9
3.4.1 Why Exponential Loss?| 12

3.5 Gradient Boosting| o 14
[3.5.1 Numerical Optimization on Additive Models| 14

8.5.2 Traming|o 16

[3.5.3 Applications of Gradient Boosting| 18

|3.0.4 Least Squares Regression| 18

[3.5.5 Binary Classification| 18

[3.5.6 Regularization| 22

B6 _XGBooST oo 23
13.6.1 Regularized Cost Function|. 23

3.6.2 Split Finding| oL 26

[3.6.3 Approximate Algorithm| 26

[3.6.4 Sparsity-aware Split Finding]

[4__Resources|

26

1 Introduction

Tree based methods are used across many Machine Learning tasks. They are favored
because of their interpretability and their ability in capturing non-linear relation-
ships in the data. Decision tree is simplest among all tree based models. It’s very
interpretable and straightforward. But it has its disadvantages. Because of its
non-parametric nature, it heavily relies on data. Different data may result in com-
pletely different trees in the tree building process. This problem is referred as ’a
model having high variance’. For this reason, decision trees are non-stable models.
They usually fail to generalize, therefore perform poorly on unseen data. In another

words, they overfit.

Ensemble methods overcome this issue by combining multiple trees (learners, gener-
ally) into a robust model that generalizes well and have high performance on unseen
data. They achieve this by reducing the bias (it can be seen as a model’s 'unability’
of capturing the complexity of the data) or reducing the variance of a model.

In this article, we’ll talk about decision trees and ensemble methods that uses deci-
sion trees in the context of classification.

2 Decision Trees

2.1 What is a Decision Tree?

Decision trees can seen as a set of if-then rules. Starting from a root node, at each
node, a decision is made. Data is splitted to different branches at each decision.
At the bottom of the tree, there are leaves. Each member of the data eventually
reaches a leaf. At each leaf, a final prediction is made. For example, if we're trying
to predict house prices, prediction at a leaf may be the mean (or median) of all
house prices in that leaf. If we are making a classification, such as classifying some
pictures as cats and dogs, then prediction at a leaf is taking the most common class
in that leaf.

Uniformity of Cell Size <= 2.5
478

[306, 172]
benign

True

Figure 1: A Simple Decision Tree

In Figure[T] there is a decision tree built based on Wisconsin Breast Cancer dataset
from UCI Machine Learning Repository. At each node, there is a condition that
splits the data, for example "Uniformity of Cell Size < 2.5’ or 'Bare Nuclei < 1.5’
Nodes at the bottom are leaves that’s classifying the tumors that reaches them as
benign or malignant.

We see that, at the left most leaf, there are 27842 = 280 members (tumor records).
These are from training data that the tree is built from. The model classified this
leaf as benign because the majority class was benign. Every new observation that
falls into that leaf will be classified as benign. 280 members of the training data
reached this leaf. 278 of them were benign and 2 of them were malignant. So, it’s
logical to label this leaf as benign because it’s the majority class. On the other
hand, second leaf from the right does not look good. There are 16 benign and 11
malignant tumors that fell into that leaf and because we label the leaf as whatever
the majority class is, it’s been labeled as benign. But the frequencies of benign and
malignant are very close. The node is non-homogeneous. Maybe it needed further
splits.

Another thing that we might have been asked is, in the root node, for example, how

did we decide to split the node by the condition "Uniformity of Cell Size < 2.5’7
How did we determine that 2.5 boundary? There must be some mechanism that
help us decide the ’best split’ in a specific node.

So, there should be two important aspects to consider in tree building process. At
each node, we check if it might be a good idea to split that node further and find
what is the best possible split criterion that creates homogeneous (pure) child nodes.

How can we measure the impurity of a node? One possible measurement is cross-

entropy, which is defined as:
K

> —pilogpi (1)

=1

where K is the number of classes, 2 for the tumor case. p; is the proportion of class
1 in the node and defined as:

pizﬁ

where V; is the number of members that belong to class ¢ in the node and N is total
members in the node.

Another impurity function is gini coefficient:
K
2
i=1

So, we calculate the impurity of a node by an impurity measurement function. We
want to create pure leaf nodes. To do that, we must select at each splitting stage,
the split that reduces the impurity most. We need to calculate the impurity after
the split.

Suppose that a splitting criterion, Cj, splits a node into n nodes. Choosing the
cross-entropy as our impurity measure, impurity after the split is defined as:

r=->" WJ > " pijlogpi; (3)
=1 =

We choose the split, C, that reduces the cross-entropy most. In other words, at a
node m, we're looking for a C that maximizes the cross-entropy decrease, which is
defined as:

D(m) =T — T, (4)

where I, is from (1) and I/ is from (3). They are calculated based on the node m.

With these fundamental ideas in our mind, let us further explore decision trees by
looking at the tree building process.

2.2 How to Build a Decision Tree

There are different algorithms for decision tree building. But their core ideas are
same. They only differ in data type treatment, tree structure and some additional
heuristics.

Suppose that we have n explanatory variables. If an explanatory variable z; is
categorical and has M distinct values, there are 2/ ~1—1 different splits. An example
split would be C(m) = 1(xz; = m) where m is a possible value that z; can have. 1(.)
is the indicator function that returns 0 or 1 based on the boolean expression that it
receives as argument. So, the example split, splits the node into two different sets.
Therefore, it creates a two different node. If x; is a numerical (continuous) variable,
it can have infinite number of values. But because we can not search for every
possible numerical value, we look for the boundary values in our training data. So,
that leaves us out with M — 1 possible splits. For example, suppose that we have
a training set that contains N records and suppose that we have an explanatory
variable z; and has values S; = {a:z(j) évzl such that S; is sorted. We check the
(9) (G+1)
%,j =0,1,2,...,m— 1.
This form of split, again, splits a set into two distinct sets. These are the basic
splitting criteria that we will use.

possible splits, C;(m) = 1(x; < m) where m =

Let us start with the simplest one, the CART algorithm. CART uses the gini index
as splitting criterion. Also, CART treats every variable as numerical. So, it always
look for split in the form C'(m) = 1(x < m). Hence, it always does binary splitting.
So, it creates binary trees. Starting from a single node, for each variable, it finds the
best split C;(m), and selects the best split among these variables. In another words,
it selects the split that maximizes the impurity decrease from (2). And it recursively
repeats this process until there is no decrease in the impurity or the impurity of the

current node is less than some threshold value.

Algorithm 1: Decision Tree Building with CART Algorithm for Classification
Input: A training set X
Output: Decision Tree
Function BuildTree(X):
/* equation (2) */
while Impurity(X) > threshold do
BestFeature, BestSplit < FindBestSplit(X)
Split X into Xjers, Xrignt using BestFeature and BestSplit
BuildTree(Xjcst)
BuildTree(X,ight)
end
return;
Function FindBestSplit(X):
MaxImpurityDecrease < 0
/* n is the number of explanatory variables */
for i < 1 ton do
foreach possible split m for x; do
Split X into Xjers, Xyigns using m, where
Xiepr ={r € X |x; <m}, Xypigne = {z € X | ; > m}
/* equation (4) */
ImpurityDecreaseA fter Split <+ ImpurityDecrease(m)

if MaxImpurityDecrease < ImpurityDecreaseAfterSplit then
MazxImpurityDecrease < ImpurityDecreaseA fterSplit

BestFeature < 1
BestSplit < m
end

end
end
return BestFeature, BestSplit

Basic CART algorithm is given above. Only one stopping criterion is given in the
algorithm. It stops when the current node’s impurity is less than or equal to some
user-defined threshold. But there are other stopping criteria as well. For example,
enforcing a maximum depth to the tree. When the tree reaches to a specified
maximum depth, the algorithm stops. Or specifying the minimum members at a
node to make it a leaf. When a node has less than or equal number of members
inside it, the algorithm stops. These stopping criteria prevents the tree from growing
too large. Consequently, prevents overfitting. These criteria often referred as pre-
pruning, meaning that pruning the tree while building it. There are also post-pruning
techniques which prunes the free after it is grown. We won’t discuss post-pruning
in this article.

3 Ensemble Learning

Basic idea behind the ensemble learning is combining multiple base learners to
create a powerful model that has higher performance than each individual learner’s
performance. There are two popular methods for ensemble learning: bagging and
boosting. Bagging works by training multiple learners on a sample drawn from
the training set. And in prediction time, it takes the average of each learner’s
prediction (for regression) or it take the majority vote (for classification). Boosting
has a different approach. It starts with a 'weak learner’ that performs slightly better
than random guessing. And it iteratively adds new weak learners to the model to
fix the errors that the previous learners made.

Clump Thickness <= 6.5
478

[312, 166]
benign

Tr'ui/ alse

374
[309, 65]
benign

Figure 2: A Decision Stump

Decision trees are often used as base learners in ensemble methods. In bagging,
multiple large trees with high variance are trained on different samples of the training
set in order to create a robust model that has low variance. In boosting, decision
stumps or small trees are often used as high biased learners. A decision stump is a
decision tree which goes only one level deep. It does only one decision. In Figure
there is an example decision stump built from wisconsin breast cancer data set. It
only uses the feature ’Clump Thickness’ and makes a single split.

3.1 Bagging

The term bagging stands for "bootstrap aggregation’. Let’s define bootstrapping and
aggregating. Bootstrapping is any method that uses random sampling with replace-
ment, which means some sample may have repeated observations. Aggregating
means combining the results taken from the different samples.. In the regression
case, 'combining’ means is taking the average of the results (5). In classification,
it means taking the majority vote (6). It turns out that taking bunch of samples
with replacement, training some models on them and aggregating the results has a
variance reducing effect. Therefore, by bagging, a model with low variance model
can be obtained by using high variance models.

Fr(r) = - " fila) 5)
=1

Fc(x):argmaXZMfl(:L‘):]), j=0,1,...,K (6)
T =1

m is the number of trained models.

3.2 Random Forest

Random Forest is an ensemble learning algorithm that leverages bagging and de-
cision trees. Decision trees are great choice for ensemble methods because they
usually have high variance. Multiple decision trees can be used together to both re-
duce their individual variances and make use of their power in capturing non-linear
relationships in the data.

Besides using decision trees, Random Forest does more one thing to create less
correlated tree to reach more predictive performance. If some features in our data
set are more correlated with our target features, then every decision trees will use
those features to make prediction and therefore, all the trees will be correlated with
one another. So, we would end up with trees that are mostly identical to another
and our overall model would have low performance. What Random Forest does to
prevent this problem is this: For each tree, it uses only a portion of the features in
the data set rather using all features. Number of trees and number of features to

uses at each tree building process are hyperparameters to tune.

Algorithm 2: Random Forest Algorithm For Classification
Input: A training set X, number of trees to grow M, number of features to
use for each tree n/
Output: Aggregator function F¢
for i <1 to M do
Draw a sample X’ from the training set X with replacement
Select n’ features from all n features at random.
Train a decision tree using X’ and n’ and call it f;(z)
end

m
return Fo(z) = argmax »_ 1(fi(z) =j), 7=0,1,..., K
J i=1

3.3 Boosting

Boosting is an ensemble method that takes a weak learning algorithm and builds
a strong predictor in a forward stagewise fashion. It starts with an initial guess
fo, and iteratively adds new weak learners with the objective of reducing the error
of the current model. There are several techniques for reducing the error. Some
examples of error reducing techniques are reweighting or resampling the training set
so that the new learner would be forced to focus on the examples with large errors
(hard examples). Other unique technique is Gradient Boosting, which makes use of
numerical optimization in the function space of weak learners.

Boosting creates additive models. And it does that in an iterative way. At each
stage, a weak learner is built according to the current overall model’s errors. An
additive model has the following form:

F(z) = fo+ fi(@)+ -+ fm(x) :f0+Zfi(x) (7)

Every f; is the resulting function of a weak learner. Weak learner might be a
parametric regression model with small amount of parameters or a small decision
tree, etc.

fi(x;60:) = 00+ Oi1x1 + - - + Oinzy, (8)
J

il w, {Rj}}]:ﬂ = szjl(x € Rj) (9)
=1

In equations (8) and (9), functions learned from linear regression and decision trees
are given, respectively. In (8), there is a linear regression model with n features. In
(9), a decision tree model which has J terminal nodes (leaves) is given. Each region
that corresponds to a leaf is given as R; and w;; is the prediction at the jth leaf.

Each boosting technique is actually doing a forward stagewise additive modelling
which is iteratively improving our overall model with small models by choosing a
model which reduces our loss, L. Its general algorithm is given below.

Algorithm 3: Forward Stagewise Additive Modelling
Output: An additive model Fy,

Fo(z) = fo
for m <+ 1 to M do

N
(Bms fm) = argmin 2 Lyis Fn1(x) + Bf(237))
Y 1=

Fp(x) = F1() + B fin (5 7m)
end
return Fj(z)

Now, let’s talk about the AdaBoost algorithm.

3.4 AdaBoost

AdaBoost is the first popular boosting algorithm. It uses multiple weak learners
which each weak learner focuses on the errors that the previous weak learner has
made. It does that by assigning weights to the observations based on some error
criterion. Resampling is also used instead of weighting, which does random sampling
but gives higher probabilities to the hard examples in order to select the observations
which has greater error. We’ll talk about the reweighting case.

It starts with a weak learner and weights w; = % where N is the number of ob-
servations in our training set. After each stage, weights are modified based on the
errors of individual observations. Observations with high errors have high weights
whereas weights of the observations that are correctly predicted are decreased. Next
weak learner is trained using those weights. Therefore, at each stage, observations
that are hard to predict correctly gets special treatment.

Now, let us formulate the AdaBoost for binary classification.

Let F,—1 denote the sum of the weak learned that are fitted in the previous stages.

Frn1(x) = fo+ fi(x) + fa(x) + - + frn—2(x) + frn—1(x) (10)

where each f; is a decision tree of the form given in (9).

Furthermore, let us define a loss function L(y, f(x)) where y is the ground truth and
f(z) is the prediction obtained through a boosted model as in (10). Also, suppose
that y € {—1,1}

AdaBoost uses exponential loss criterion which is defined as:

L(y, f(x)) = exp (~yf(z)) (11)

At each stage, AdaBoost must solve:

N
(B fm) = axgmin > exp(—yi(Fno1(z) + B (x)))
) =1

where f,, is the weak learner that is to be learned and £, > 0 is its coefficient
which controls its influence in the overall model.

We can simplify the objective above as the following;:

N
(B, fin) = ar%r;linzw,(m) exp(—yiBf () (12)
=1
where wgm) = exp(—yiFm—1(x)). w!™’s are not related to 5 and f, so we can see

them as weights. Solution of this objective involves two steps. First, for any S5, we
have:

N
fn(z) = arg;ninzwgmn(yi # (i)
=1

Now let us find (3,,,. We can further simplify the objective given in (11) by separating
the summation into two summations based on y; = f(z;) and y; # f(z;). If y = f(x),
then exp(—yf(x)) = e~ !, otherwise it is e'. Therefore it can be written as:

e B Z wgm)—i— el Z wgm)

yi=f (i) vi#f (i)

To find the 3,, that will minimizes this equation, we take derivative with respect to
8 and set it to zero:

—e P, Z wz(m)—k el Z wgm)zo

yi=f (i) yiAf (i)

When we pull 8 from the above equation, we find:

10

1 1—-err,

Bm =35 log

2 erTm
where
X m)
> wp L(yi # fm(wi))
erry, = =1 ~
> w™
i=1

Finally, we update our prediction as:
Fm(m) = Fm—l(x) + 5mfm($)
Also, recall that our weights were:
w™ = eap(—yiFn-1(x))

In the next iteration, new weights will be:

(m+1)

w;" " = exp(—yiFm (i)
= exp(—yi(Fn—1(zi) + Bmfm(x:)))
= e;pp(YiFom 1(1‘1)) . 6$p(*yzﬁmfm($l))

’U}(m+1) — 'U)Z(m) e yzﬁmfm(xz)

After updating our weights, we normalize them so that their sum equals to 1:

wz(m—’—l) = (m+1)

’(U
% (m+1)

Note that we can write —y f(x) as 2(1(y = f(x))) — 1, therefore we can change our
weight update rule by the following:

wg’”*l) _ wz(m) Bm20(yi=fm(2:)))—1]
(M) aml(yi=fm(z;))—em

= w; . e

11

(m)

where o, = 23,,. Also, B,, is common for all w; . So, we can simplify our update

rule as following:

RCRY) wz(m) pom1(yi=fm (xi)) (13)

(2

Algorithm is given below.

Algorithm 4: AdaBoost For Binary Classification
Output: An AdaBoost model F(x)
F(x)=0
Initialize weights w§0)
for m <1 to M do

(m)

Fit a classifier f,, using weights wim

5~ 0™ (g o (1))
o Wi 17 Jm Ty

1=

1
N

Compute erry, < ~
> wi™
=1 ‘

l—errm

Compute a;, < log errm
Z(m+1) « wl(m)) eocml(yi:fm(wi))

(m+1)

)

Update weights w
(m+1)

Normalize weights w +—

w;
g: w(m+1)
k=1 k
end

return F(z) = sign { S fm(x)]

m=1

Final model is just the weighted majority vote of the trained classifiers. In the same
logic, the predictor multi-class can be defined as:

F(x) = argmax (Z - 1 fm(z) = k:))

k i=1

where £k =0,1,..., K

3.4.1 Why Exponential Loss?

AdaBoost uses exponential loss criterion given in (11). One advantage of exponential
loss is its low computational cost. This makes it an appropriate choice for additive
models like AdaBoost becasue of their iterative training process.

Let us now see why exponential loss function works and how to minimize it.

12

We, again, will analyze the binary classification case where y € {—1,1}. Suppose
that we have a predictor f(z).

Exponential loss is defined as:

L(y, f) = e ¥/

We want to minimize the expected loss Ey|m[€_yf (#)] where Y is a discrete random
variable that takes values in { -1, 1 }. Expected loss is defined as:

Ey|x[e—yf(x)] - Z e—yf(fv)p(y = y|x)
y

= P(Y = +1]z)e @ 4 P(Y = —1]z)ef@

We want to find the predictor f*(x) that minimizes this loss function. So, we take
derivative with respect to f and set it equal to 0.

—P(Y = +1|2)e 7@ 4 P(Y = —1|2)ef@ =0
After pulling f from the equation, we find f* as:

. 1. P =+lz)
F@) =3los g

which is one half of the log-odds (or logit) function. This result allows us to make
sense of exponential loss because when P(Y = +1|z) > 0.5, logit function gives
a positive value, and it gives a negative value if P(Y = +1|z) < 0.5 (or P(Y =
—1|z) > 0.5) (See Figure [3). Recall that our prediction function was the sign
function (Algorithm 4) in binary classification case of AdaBoost. So, this convince
us of the choice of exponential loss function becasue whenever we have a probability
less than 0.5, it returns the negative class, otherwise it returns the positive class.

13

6 fx)=log 45 '
4 |
2 /
0 02— 06 08 1.0
- —
2
-4
-6

Figure 3: Logit Function

3.5 Gradient Boosting

In a general supervised machine learning setting, we often want to find an estimate
F(x), that produces a value y* as the prediction to the ground truth y. To find
the optimal F', we find the function that minimizes the expected value of some
pre-determined loss function.

Fr = argmin Ey o [L(y, F(x))] (14)

Instead of looking at all possible functions, we usually narrow our function space
down to a family of parameterized functions F'(x; P) where P is a set of parameters
that defines the model.

Now, the problems reduces to finding the parameters, P*, that minimizes the ex-
pected loss.

P* = argmin By ,[L(y, F(x; P))]
P

= argmin ®(P)
P
And we denote our estimated function as F™* = F(x; P*)

3.5.1 Numerical Optimization on Additive Models

Now, we restrict our attention to additive models. We define our additive as follow-
ing:

14

F(x;{ By Ym=1) =) Bh(x;am) (15)

1=

So, the P corresponds to the parameter set { B, an, }M_; and h(x;a) is a simple
model obtained by a weak learner. We will be using small regression trees as our
weak learners. In that case, the parameters, a,,, corresponds to split variables, split
points and predictions at leaf (mean, median, etc. for regression trees). And the
parameter [3,, is the weight of the weak learner.

If we make an analogy to gradient descent, in which we make an update with a

function’s steepest direction to find the point where it is minimum:

ri=x—ax*f(x)

where « is the learning data.

Or if we want to find the parameters of a function where it attains its minimum
value, we make updates using a cost function J(6):

8.7 ()
o0,

92' = 91 —
With the same logic, in Gradient Boosting, we make updates to our additive model:
Fin(x) = Frno1(x) + fm(x)
where fm(x) = _ngm(x) and

o _ [PE[L(y, F(x)|x]
gm (%) [OF (x)]F(x)sz—1(X)

and the final solution will be:

F'(x) =) fu(x)

where fo(z) is the initial guess.

We also find the optimum p,, as:

15

pm = argmin Ey x L(y, Frp—1(x) — pgm(x))
P

3.5.2 Training

This method cannot be directly applied when we have limited data because we
cannot calculate the expected loss directly. In this case, we make use of the training
set that we have.

We will use the parameterized additive model in (15) and minimize expected loss
estimated from the training set:

N M
{ Bm,am } = argmin ZL <yi, Z 5;,Lh(xi;a;n)>
moAm =1 m=0

mir9m

It’s often hard to find all the parameters at one step. Instead of this, we use an
iterative approach.

N
{ Bmram } =argmin Y L (i, Fn-1(x:) + B, h(xi;a),))

Y
m3m =]

then we make update:

Fm(x) = Fm—l(x) + 6mh(x§ am)

If you recall, this is the Forward Stagewise Additive Modelling technique that we
talked about in the previous section.

In the case where we have finite data, g,,, the gradients are calculated for the
training data instances {x;}:

_ [PL P
gm(xl) - [aF(Xz) :|F(x)Fm1(x)

But we cannot calculate the gradients directly for new data points other than the
ones in the training set. And even if for training set, if we use the gradients directly,
the model would not be well generalized. Therefore, we need our model to learn
a mapping from training data points to gradients in order to generalize to unseen
data. To do that, we use a parameterized function and that is the h(x;a), as we
mentioned and learn its parameters, a, as given below:

16

N

ap = argmin > (=gm(xi) = Bh(x;;a)) (16)
i=1

So, we fit the negative gradients, —g,,, to the parameterized model h(x;a) to learn
a mapping from the obversations to its gradients. Negative gradients are also called
”pseudo-responses”, in the sense that, we try to learn a mapping to them even
though they are not the real response values. And they are also called ”pseudo-
residuals” as well.

Therefore, we have a general algorithm that we will work for any differentible loss
function. At each stage of the algorithm we learn a mapping from data points to
gradients. This is analogous to the standard applications of gradient descent in
machine learning where the parameters of a function is learned.

Algorithm 5: Gradient Boosting
Output: Fj/(x)

N
Fy(x) = argmin > L(y;, ¢)

c =1

for m <1 to M do

Gi=— [W} PN S P N
a,, = argmin »_ (y; — ﬁh(xi;a))2

a,fs z’;l
pm = argmin »_ L (y;, Fin—1(x:) + ph(xi; a))
Fpn(x) :me,le(lx) + pmh(xi; am)

end
return Fj/(x)

17

3.5.3 Applications of Gradient Boosting

Let us derive some algorithms for common tasks such as regression and classification
using the Gradient Boosting methodology that is presented in the previous section.

3.5.4 Least Squares Regression

We define the loss function for least squares regression as L(y, F) = (y_ZF)2, the
squared error. Pseudo-responses are derivative of this loss function. So, ¥ is simply
y — F. Our initials guess will be Fy(x) = g, namely the mean of the target values,
because squared error is minimized at the mean. With these, we can build our least

squares regression with Gradient Boosting algorithm.

Algorithm 6: Least Squares Regression
Output: Fj/(x)
Fo(x) =y
for m <1 to M do
g’j,- :yi_Fm—l(xi) 1= 1,2,...,N

N
{ @, pm } = argmin 32 (5i — ph(xi a))*
ap =
Fm(X) = mel(fx) + th(x'ﬁ am)
end

return Fj/(x)

3.5.5 Binary Classification

In the case of binary classification, we have negative binomial log-likelihood as the
loss function:

L(y, F) = —(ylogp + (1 — y)log(1 — p))

where y € {—1,1}. p is related to F' through:

1

p(y =1[x) = [Py

Pulling out F' from this equation, we find:

L [Ptk
Feo =51 g[P<y=1|x>}

18

With some algebraic manipulation, we can write the same loss function using only
y and F"

L(y, F) =log(1 + exp(—2yF))

Taking derivative with respect to F', we find the pseudo-response:

(17)

= — [3L(yz‘7F(Xi))] _ 2yi
' F(Xi) I pog=rFn) LT ePRyiFm-1(x))

where 1 =1,2,..., N

We will use regression trees as our base learners to learn a mapping to these pseudo-
responses. After building the regression tree, predictions in the leaves, R;,, is the
solution of this objectve:

Yjm = argmin Y log (1 + exp(—2yi(Fn-1(x) +7))) (18)
v XEij

We can’t directly solve this equation. Instead, we will estimate it with a single
Newton-Raphson step. For that, we need to find the first and second derivative of:

H(y; Rjm) =) log (1+ exp(=2yi(Fn-1(x) +7))) (19)

XEij

1-step Newton-Raphson approximation of gamma with initial value 0 is:

__ H'(w)
T T ()
H'(0)
B H"(0)

H'(0)
_H”(O)

=0

First derivative of H is:

. —2y;
H (7) - Z 1 +exp(2yi(Fm—1(xi) +’7))

XEij

19

And at v =0:

H'(0) = Z 1+ exp(2y; Fin—1(x;))

XEij

We can see this equation is equal to negative of y (see equation (17)). So:

Ho=- 3 & (21)

XGij

Second derivative of H can be found by taking derivative of (19) with respect to v
again:

H'0) = 3 SH)

XERjm
(—2yi)2y; exp(2yi Fin—1(%))
XERjm (1 + eXp(Qyi(Fm—l(X) + 7)))2

- Z -y .7 . exp(2y;i Fr_1(x))

XER]‘m
~ - (2y—y
S G k)
XEij y
= > -2y
XGR]‘m

We can simplify this a little bit further. We can see that, from the equation (17), y
and y always has the same sign. So, the product y . ¥ equals to |y].

Therefore, the second derivative equals to:

H'(v)= Y gl (gl -2) (22)

XER]'m

Being calculated the first and second derivatives, we can find our 1-step Newton-
Raphson approximation of ~:

20

Xe R‘j m

> 9l (g1 -2)

XEij

>y

XGij

TS g e -

XEij

By using (23), we can label the leaves of the decision tree that was built in mth
iteration.

Finally, we must derive an initial prediction, Fj(x). One can easily show that the
negative binomial log-likelihood is minimized at:

Fo(x) = = log | = (24)

N
Notice that we used + > 1(y; = 1) as an estimate for P(y = 1|x). Similarly
i=1

N
+ S 1(y; = —1) is an estimate for P(y = —1|x). By using these estimates, we
i=1

came up with (24).

Note that the Fj is refers to a constant value that minimizes cost

N
Equation above becames a lot clear if we used § = % > i

s
Il
—

Fo(x) = 5 log 1_y (25)

21

Algorithm 7: Binary Classification With Gradient Boosting
Output: Fy/(x)
Fy(x) = % log 1L

-2 11—y
for m <1 to M do
o 2yi .
Yi = Teap@uFaam)) P = b2 N

{ij}jzl = DecisionTree with J — leaves

g

{m } = e j=1,2,...,]
pREeE)
XEij
J
Fin(x) = Fn1(2) + 32 vjm1(x € Rjm)
7j=1

end
return F/(x)

Following the same logic, any learning task with any differentiable loss function L
and base learner h, can be done with Gradient Boosting algorithm presented in
Algorithm 5.

3.5.6 Regularization

Usually, we don’t want our learning algorithm to ”overlearn” our training set. In-
stead, we want them to generalize and have high performance on unseen data as
well as training data. If a learning algorithm performs almost perfect on training
data but perform poorly on a separate validation set, then that algorithm is said to
be overfit. There are techniques to overcome this problem of overfitting. They are
called regularization techniques. Regularization techniques differs from algorithm
to algorithm.

For example, in gradient descent, we regularize our model by tuning the learning
rate parameter or number of iterations. Learning rate is the shrinkage parameter
applied on the gradients of the cost function.

In Gradient Boosting, we train M base learner to learn a mapping to gradients.
Then update our model with these gradients. So, one natural regularization tech-
nique is tuning the M parameter. Other one is bringing a new learning rate param-
eter v, to the model. We can modify our model update equation with this learning
rate parameter as the following:

Fo(x) = Fp_1(x) + v . pph(xi;am)

By using a learning rate, we reduce the influence of a single base learner to leave
some room for other base learners to improve the model.

22

There are other effective regularization techniques that are used by popular Gradi-
ent Boosting libraries such as XGBoost, Light GBM, Catboost, etc. Popular ones
includes maximum features to use at each iteration (this is similar to Random For-
est), subsampling the training set at each iteration and maximum depth of each
tree, etc.

In the next section, we will discuss these popular algorithms that uses the Gradient
Boosting concept.

3.6 XGBoost

In recent years, several Gradient Boosting algorithms has been developed. With
these algorithms, Gradient Boosting became much more scalable and computation-
ally efficient. In Gradient Boosted Decision Trees, most computationally expensive
part is the tree building process. For each non-terminal node, a split criterion must
be found by looking at all possible splits of each feature. This process is really slows
down the training of Gradient Boosted Decision Trees. If we have lots of features
and lots of data, even one step of Gradient Boosting takes an unreasonable amount
of time. Recently developed algorithms address this problem and gives efficient
solutions.

One popular Gradient Boosting franework is XGBoost. It was initially developed
in 2014. It uses a modified cost function that has an additional regularization term
which penalizes the complexity of the trees. Besides that, it addresses computational
problems that arise when using Gradient Boosting in large data sets by proposing
several solutions.

3.6.1 Regularized Cost Function

As we seen on the previous chapter, given a loss function, L, we define our objective
(cost function) as:

XGBoost proposes a modified version of this objective that takes regularization into
account:

N M
L= Ly, Far(xi)) + Y Q(fx) (26)
i=1 k=1

23

T
1
where Q(f) =T + iAijQ. T is the number of leaves in the tree f and wj is

j=1
the score in jth leaf. v and \ are regularization parameters.

This objective minimizes the loss of the final model Fj; with M trees. However, in
practice, it’s impossible to find M trees in only one step. We need a greedy approach
that adds the trees in an iterative fashion. So, at iteration m, we need to solve the
objective:

N
£ =" Ly, Fne1(%) + fm(%3)) + Q(fm) (27)

i=1

Assuming that L is a twice differentiable function, we approximate the L function
by second order Taylor polynomial.

£ = 3 [Ll Fonca () + 90 o) + 50 2000 | + 00) (25)
i=1
where OL(yi. F ()
Yiy 'm—1\X
g(x) = OF 1 (%)
and

oL inm— X 2
hlx) = E;JQFm—l(li)))

This equation can be simplified by removing the constant terms.

N

L£m) = Z [g(xi)fm(xi) + ;h(xi)fgz(xi)} + Q(fm)

=1

N
g[)05 + hG) P2)| T+ DS wy?

j=1

To simplify this equation further, we can group the summations to be based on the
points in the same leaf. Recall that we can define the f,, as:

T
X) = ijl(x € Rj)
j=1

24

Using that definition of f;, we can simplify our objective:

T [T
~ 1 1
£ = Z Z g(xi)w; + 3 Z h(xi)w]z +~T + 5/\ij2
7j=1 _X'L‘eRj x;€ER; 7j=1
r [1
J=1 |xi€R; x;€R;

We need to find w;’s that need minimize this equation. Taking derivative with
respect to w;, we can find the optimum wj:

> g(xi)

* XiERj
wi— (29)
’ > h(xi) + A
x;€R;

Using these w;’s, we can find the optimum cost value:

2
T Z 9(x:)
~ * 1 X;ER;
L£m" — _Z i +~T 30
2;1 D h(xi) + A (30)

We can use this equation as a scoring function when deciding on split criteria. As
discussed in Decision Trees chapter, when we looking for the best split across all
feature space, we choose the feature and the split point that gives the most reduction
in our impurity. Likewise, XGBoost chooses the split crtierion that results in most
reduction in the cost (28).

If a region R is splitted into two regions Ry, and Rpg, then the reduction in the cost
after the split is given by:

(X g (X g=))? (X g(x))?

5 * _ 1 X;ERL, + X;€ERR . X;€ER .
2| S Ax) A S h)+ A S hx) +a| !

x;€ERp, X;€Rp x;€ER

(31)

25

3.6.2 Split Finding

As we discussed in the previous chapter, split finding is arguably the most compu-
tationally expensive part of the Decision Tree algorithm. To find the best split for
a specific node, we need to iterate over all features and sort their values, and search
for the values that gives the best split according to some impurity measure like gini
index, cross entropy or cost reduction like (31). This algorithm is called the Exact
Greedy Algorithm. In settings where we have millions or billions of data points, this
solution becomes infeasible.

Instead, XGBoost proposes several algorithms for avoiding the disadvantages of
Exact Greedy Algorithm for split finding.

3.6.3 Approximate Algorithm

Exact Greedy algorithm needs to enumerate over all values of a feature in one step
and it needs to repeat that for all features. To avoid the computational cost of
this process, XGBoost proposes an algorithm called Approximate Algorithm. What
it does is, instead of looking at every value of a feature, it finds [percentile of
a feature, based on its values in the training set. Then, it iterates over these [
different percentiles to find the best possible split amongst these percentiles, instead
of looking at N ~ N different values of a feature. As the Exact Greedy algorithm,
Approximate Algorithm does this step for every features.

3.6.4 Sparsity-aware Split Finding

There can be a lot of sparse features in large data sets. This sparsity in the data
slows down the split finding process. XGBoost proposes a Sparsity-aware Split
Finding algorithm. It gives a default direction (left or right) to which a way the
missing values in the feature to go while splitting the node. It finds the best direction
from the data by looking at only the non-missing values and calculating the cost
reduction in each direction.

There are also low level optimizations XGBoost performs that speeds up the tree
learning process. Its paper explains them in detail.

4 Resources

In this section, I’ll give the resources I used while preparing this article.

You can download the Wisconsin Breast Cancer Data Set from here: https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

26

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Ethem Alpaydin’s Introduction to Machine Learning book has a great Decision
Tree chapter that gives a solid introduction. Stanford University’s CS229 course has
useful material in various topics including Decision Trees, Random Forest, Boosting,
etc.

A couple of detailed material about CART can be found from these links: [1/[2

Elements Of Statistical Learning book by Trevor Hastie, Robert Tibshirani, Jerome
H. Friedman is a great book that covers lots of topics in Machine Learning. It has
separate dedicated chapters about the topics covered in this article and it gives clear,
detailed explanations about these topics.

Jerome H. Friedman’s Greedy Function Approximatiin: Gradient Boosting Machine
paper gives a thorough description of Gradient Boosting algorithm and derives sev-
eral algorithms using Gradient Boosting.

XGBoost: A Scalable Tree Boosting System paper by Tiangi Chen and Carlos

Guestrin describes the XGBoost framework. Interested readers are encouraged to
read it if they want to learn about what optimizations XGBoost does more deeply.

27

http://cs229.stanford.edu/syllabus-autumn2018.html
ftp://ftp.boulder.ibm.com/software/analytics/spss/support/Stats/Docs/Statistics/Algorithms/14.0/TREE-CART.pdf
https://rafalab.github.io/pages/649/section-11.pdf

	Introduction
	Decision Trees
	What is a Decision Tree?
	How to Build a Decision Tree

	Ensemble Learning
	Bagging
	Random Forest
	Boosting
	AdaBoost
	Why Exponential Loss?

	Gradient Boosting
	Numerical Optimization on Additive Models
	Training
	Applications of Gradient Boosting
	Least Squares Regression
	Binary Classification
	Regularization

	XGBoost
	Regularized Cost Function
	Split Finding
	Approximate Algorithm
	Sparsity-aware Split Finding

	Resources

