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1 Introduction
The goal of this project is to develop a proof mode for first-order logic in Coq,
inspired by the Iris proof mode. This prototype allows the user to prove
statements in a first-order deduction system using many Coq-like tactics
while also aiding with context management. It allows significantly shorter
proofs (usually 2-3 times) that are also more readable.

My main contributions are contained in the Coq files ProofMode.v and
Theories.v. Example use cases can be found in the demo files DemoPA.v for
Peano arithmetic and DemoZF.v for Zermelo–Fraenkel set theory.

The first part of this document contains a brief users guide describing the
setup and the available tactics. The second part is a more in depth descrip-
tion of how the proof mode works internally.

2 User guide

2.1 Setup

To use the proof mode, you need to perform some setup steps beforehand.
We follow the example for Peano arithmetic in DemoPA.v which can easily be
adapted to other systems.

First, you need to prove that your signatures have equality deciders. This
should be trivial:

Instance eqdec_funcs : EqDec PA_funcs_signature.
Proof. intros x y; decide equality. Qed.

Instance eqdec_preds : EqDec PA_preds_signature.
Proof. intros x y. destruct x, y. now left. Qed.

If you use custom definitions (not notations!) inside your formulas (for ex-
ample zero in the PA demo or subst in the ZF Demo), you need to register
them for the proof mode. Simply override the tactics custom_fold and
custom_unfold with the corresponding fold and unfold calls like this:

Ltac custom_fold ::= fold zero in *; ...
Ltac custom_unfold ::= unfold zero in *; ...

Also if you have custom simplification lemmas, for example substitution
invariance for specific terms (like numeral_subst_invariance in the PA
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demo), or any other simplifications that might be helpful in your domain,
you can register them by overriding the tactic custom_simpl:

Ltac custom_simpl ::= try rewrite !numeral_subst_invariance; ...

If you want to use rewriting with equalities, you need to show that your
signatures satisfy the Leibniz type class:

Instance PA_Leibniz : Leibniz PA_funcs_signature PA_preds_signature.

This requires providing the equality predicate and the minimal set of axioms
that is needed for proving the following Leibniz rule:

leibniz A phi t t' : Axioms <<= A -> A ` eq t t' -> A ` phi[t..] -> A ` phi[t'..]
leibniz_T T phi t t' : Axioms_T v T -> T  eq t t' -> T  phi[t..] -> T  phi[t'..]

Note that you can already use the other proof mode tactics to prove this.

TODO
This could possibly be automated. Then the user would only need to
prove the auto-generated axioms.

2.2 Overview

The proof mode is invoked with the tactic fstart. This will change the way
your goal looks like:

• The different hypotheses in the context will be displayed one under-
neath the other just like the Coq context. Also each hypothesis gets a
name that can later be used to refer to it.

• The de Bruijn indices get replaced with names to make goals and hy-
potheses more readable.

If you want to leave the proof mode again, simply call the fstop tactic. But
note that your custom hypothesis names will get lost and cannot be recovered
again.
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Remark
It is not necessary to start the proof mode if you only want to use the
custom tactics described later. These work out of the box on any goal,
regardless if the proof mode is started or not. For simple examples this
may already be enough, but for more complex proofs, starting the proof
mode is recommended.

2.3 Input syntax

The proof mode supports an easier way of writing down formulas that avoids
the use of de Bruijn indices. Instead you can simply used names as binders
like you are used to from Coq. For a demo of this, look at the last section of
the PA demo file.

Before using the input syntax, you need define notations for your functions
and predicates as bFunc and bAtom:

Require Import Hoas.

Notation "x '==' y" := (bAtom Eq (Vector.cons bterm x 1
(Vector.cons bterm y 0
(Vector.nil bterm))))

(at level 40) : hoas_scope.

Notation "'σ' x" := (bFunc Succ (Vector.cons bterm x 0
(Vector.nil bterm)))

(at level 37) : hoas_scope.
...

Important
Note that you are required to put the type bform in the Vector.cons and
Vector.nil call for the coercions to work. Also the notations must be
put into the scope hoas_scope.

To use the input syntax, prefix the formula with << and add the hoas scope
delimiter:

Lemma division_theorem :
FAI ` <<(∀' x y, ∃' q r, (x == r ⊕ q ⊗ σ y) ∧ r ≤ y)%hoas.

Proof.

Note that the quantifiers must have a prime behind them.
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2.4 Working with the context

There are many different ways you can refer to a hypothesis in the context:

• If you started the proof mode, introduced hypotheses have names in
the context. You can simply give the according string to a tactic to
refer to one of these hypotheses. This is the recommended way to work
with the context.

Example: fapply "H3". frewrite "H".

• Alternatively you can directly give a formula that is in the context.
This is useful when working with named axioms.

Example: fapply ax_sym. frewrite (x == y).

• You can also refer to a hypothesis by its index in the context. This is
useful when the proof mode is not active.

Example: fapply 3.

Important
If parts of your context are folded behind an identifier (like FA `
... in the Peano example), this will not work. The only way is to
unfold or give the term directly.

• The Coq context itself is also accessible. If you have a hypothesis H :
C ` phi you can pass H as an argument.

2.5 Tactics

2.5.1 fintro

The fintro tactic works analogously to the Coq intro tactic. There is also
the fintros-variant for introducing multiple things at once. There are a few
things to note:

• If you introduce a forall-quantifier, you can give an identifier name as
a string. If you do not give an argument or put the string "?", a new
name is automatically generated.

Example: fintro "x". fintro. fintro "?".

• When introducing implications you can also give a name to the hypoth-
esis as a string. Note that this has only an effect if the proof mode is
active.
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• fintros can take multiple strings. If you do not give any arguments,
everything will get introduced.

Example: fintros "x" "H". fintros.

• The tactics also support intro patterns similar to Coq to recursively
destruct conjunctions, disjunctions and existentials.

Example: fintros "[H1 ?]" "[H|[x H2]]" "[|]" "[ ]".

Important
Intro pattern parsing is very limited at the moment. You are not allowed
to put any extra spaces inside the pattern or it will not be recognized.
For example "[H1|H2]" is valid, while "[H1 | H2]" is not. If you leave
out names, the only valid forms are "[H ]", "[ H]", "[ ]", "[H|]",
"[|H]", "[|]". This restriction also applies to every other tactic that
uses intro patterns.

2.5.2 fapply

The fapply and feapply tactic works just like in Coq. You can specialize
but the tactic is also able to find the correct instantiations of quantifiers au-
tomatically. Additional premises may be added as goals for the user to prove.

Example: fapply ax_sym. feapply ("H" x z). feapply ("H1" "H2").

You can also apply in hypotheses with intro pattern support. Application of
equivalences is also supported.

Example: feapply ax_pair in "H1" as "[H1|H1]".

Important
The fapply tactic may not work, if the goal already contains evars. In
that case you should use feapply instead.

2.5.3 frewrite

For rewriting to work, make sure that you followed the corresponding setup
steps. You need an assumption of the form C ` x == y and can rewrite in
the goal. Quantified assumptions are also supported, but you need to give
the arguments explicitly.

Example: frewrite "H". frewrite <- (ax_sym zero x).
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Remark
Rewriting under quantifiers is supported but you should be aware of the
following fact: If you know that x == y you actually cannot rewrite in
something like ∀ x == z. Because of the quantifier you need shifted oc-
curence of x like ∀ x`[↑] == z.

2.5.4 fdestruct

Destructs conjunctions, disjunctions and existentials with intro pattern sup-
port. If no pattern is given, the hypothesis is maximally destructed by auto
generated names.

Example: fdestruct "H". fdestruct "H" as "[x H]".

2.5.5 fassert

Behaves like the Coq tactic assert and supports intro patterns.

Example: fassert (x == y). fassert (a ∨ b) as "[A|B]" by tac.

Important
If you use the by syntax with multiple tactics you need to put the whole
tactic inside parenthesis.

Example: ...; (fassert t by tac1; tac2; tac3); ...

2.5.6 fspecialize

Can be used to specialize formulas.

Example: fspecialize (H x y "H3"). fspecialize H with a, b.

2.5.7 ctx

The ctx tactic solves goals that are contained in the context.

2.5.8 Classical logic

In a classical system, there is a tactic fclassical that performs a case
distinction on a formula. You get two cases, one with the formula and one
with the negated formula in the context. Also supports intro patterns.

Example: fclassical phi. fclassical (a ∧ b) as "[A B]" "H".
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The tactic fcontradict allows for proof by contradiction. It puts the negated
original goal in the context and leaves the user to prove falsity.

Example: fcontradict phi. fcontradict (a ∧ b) as "H".

2.5.9 Other tactics

There are some other tactics that behave just like their Coq counterpart:

Example: fexfalso. fsplit. fleft. fright. fexists x

3 Behind the scenes

3.1 Proof Mode

My goal for the proof mode was to have the special notation only active
inside the Coq goal. Deductions in the Coq context should be displayed in
the usual C ` phi notation. Therefore simply overriding the prv notation to
get the horizontal bar is not sufficient. The main trick is to define a function

pm C phi := prv C phi

that acts like an alias for the prv type. By defining the proof mode notation
only for pm, we can manually control when to use it while preserving compu-
tational equivalence. For the same reason there are aliases for cons and nil
on formula lists

cnil := @nil form
ccons (s : string) phi C := @cons form phi C

They are used to print hypotheses one under another in the context. Note the
extra string argument s in ccons. It is used to give names to the hypotheses.
Additionally there is an alias for complete formula lists

cblackbox (C : list form) := C

that is wrapped around lists that are not syntactically known to be nil or cons.
This is only used to indent these lists nicely in the context. For deduction on
theories there are also functions tpm, tnil, tcons and tblackbox that are
defined in the same way.

The tactic fstart then simply replaces the prv or tprv with pm or tpm and
updates the context accordingly so that the notation gets applied. The fstop
tactic unfolds all of these functions to get back to the original type.
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Starting the proof mode also replaces de Bruijn indices with named
binders. This is done again with the usual trick of defining aliases

named_quant op (x : string) phi := quant op phi
named_var n (x : string) := var n

where x is the display name of the variable. The tactic update_binder_names
ensures that all names are given correctly and should be called if the quan-
tifiers in the goal or the context change.

TODO
When creating the context, automatically generated names are used. Es-
pecially when leaving and reentering the proof mode it might be nice to
allow the user to pick names themselves. Maybe something like fstart
with "Hx" "H" "H’"?.

More importantly, the variable names are also given automatically and
change (!) after an intro. This might be very confusing for the user but
remembering the names across tactic calls seems difficult, especially con-
sidering the compatibility layer. But I think the current solution is still
better than de Bruijn indices.

3.2 Tactic compatibility

As described in the last section there are four different types of goals our
tactics should be able to work with: prv, tprv, pm and tpm. It would be very
inconvenient if all tactics would need to be written in a way that handles all
of these different types. Especially maintaining the proof mode aliases would
be tedious. Therefore there are some compatibility levels that should make
writing tactics more easy.

The most important design decision is, that all tactics available to the user
assume that the proof mode is inactive. Therefore they only have to work
on goals of the form prv or tprv (notable exceptions are the fintro and
fdestruct tactic, because they need to alter the context). To make tactics
compatible with the proof mode, there is the higher order tactic make_compatible
that takes a tactic and lifts it to work with the proof mode.

If the proof mode is active, make_compatible stops it while remembering
the context, executes the given tactic and restores the proof mode to the
state it has been before. Also tactics lifted by make_compatible get an
extra argument where the current context is filled in. This way, tactics get
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access to the hypothesis names that are only present if the proof mode is
active.

Note that make_compatible only works, if the given tactic does not alter
the context!

By adding this compatibility layer, tactics now only need to differentiate
between deduction on lists or theories. To make this as painless as possible,
I defined a type class DeductionRules that includes all of the first-order
deduction rules and showed that tprv also satisfies them (see Theories.v).
There is also a type class for classical deduction rules and Weakening that is
satisfied by tprv.

The advantage is, that you can now apply rules like II, AllE, Weak etc.
independent of the concrete system you are in and tactics do not need to
differentiate these cases that would result in a lot of duplicated code. There
is also the additional benefit that this can easily be extended, for example to
deduction on a tuple of a list and a theory.

On top of that there are the tactics get_context and get_form that return
the context or the formula of the goal or of a Coq hypothesis. This avoids
matching on the goal. For the same reason there are the tactics assert_comp
and enough_comp that can be used in place of the original Coq tactic.

Example: (assert_comp (phi --> psi) as H by tac) asserts H : C `
phi –> psi or H : C  phi –> psi depending on the current context C
and the deduction system.

3.3 General tactic design

Most tactics need to interact with a hypothesis in some way or another. As
mentioned before, hypotheses can be referenced by a name, a context index,
a Coq hypothesis name or by the formula type. Therefore the first step is
always to move the referenced formula phi into the Coq context by asserting
a new hypothesis H : C ` phi, where C is the current context. Working with
a Coq hypothesis has the benefit, that we are isolated from the goal and can
apply tactics directly in H. After everything is finished, H gets cleared again.

Another common pattern is the handling of specialization of hypotheses in
tactic arguments. For example you might want to give arguments before
applying a function:

frewrite (ax_trans x y z) or fapply ("H3" a "H")

Supporting this notation with an unconstrained number of arguments is quite
difficult in general. Tactics with variable numbers of arguments are possible
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with continuation passing style, but do not support the notation above. Thus
the best solution seems to be defining a tactic notation for each argument
length you want to support, effectively limiting the possible maximum num-
ber of arguments. But by covering the range anyone could reasonably use in
practice, this should be acceptable.

The tactic notation then calls the “real” tactic (frewrite’, fapply’, etc.)
that accepts a list of all the arguments. Each tactic then internally uses the
fspecialize tactic that performs the necessary specializations and lookups
in the context on the Coq hypothesis H.

Also noteworthy is the tactic simpl_subst that can simplify substitutions in
the goal or a Coq hypothesis. This is also used in many places.

3.4 Intros and intro patterns

In contrast to most of the other tactics, the fintro tactic needs to be aware
if the proof mode is active or not, because it changes the context. Also
introduction of variables behaves differently, depending on whether you do
deduction on formula lists or theories:

With lists, every context is finite which allows us to use a different notion
of forall-introduction. Instead of shifting the entire context to make variable
0 free, we can find a new variable that is not used and avoid the shifting.
The lemma used to achieve this gives us a term instead of the actual variable
which has the benefit, that the handling of the introduced variables can
happen on then Coq level. Also it seems more natural to introduce a term
x, instead of a variable $n.

Avoiding the shift is not possible when using theories as they can con-
tain infinitely many formulas. There we must use the theory variant of the
vanilla forall-introduction rule. The variable $0 is again replaced with a
Coq variable x using a substitution. I also want to mention, that the mapT
(subst_term ↑) call cannot be simplified computationally. Instead, the tac-
tic simpl_context_mapT is used to evaluate the call in a syntactic way by
repeatedly applying a rewrite lemma.

Another critical fact is that because of the purely syntactic matching of Ltac,
we cannot look behind defined constants. But if the user has a definition
that hides a forall-quantifier (for example the subset predicate in the ZF
demo) we would not be able to detect it using matches. That is one of the
reasons why the user is required to register those definitions by overriding
the custom_fold and custom_unfold tactic. This way, fintro can unfold
if it gets stuck and check if there are hidden quantifiers. This trick is also
used by some other tactics.
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Another problem that occurred when developing the fintro tactic was how
to turn a variable name, given by the user as a string, into a fresh Coq
identifier. Sadly there is no easy way to turn a Gallina string into an Ltac
string that can be used to create a fresh name. The first solution I came up
with was to split up the introduction of variables and hypotheses into two
different tactics so that one can take Coq identifiers as an argument and the
other strings. The main problem is that this does not work, if the variable
name occurs inside the pattern, as is the case with the destruction of an
existential. Also we want an fintros tactic that can intro multiple things
at once. This would need be implemented using tactic notations that figure
out which version of fintro to call depending on the argument, leading to
an exponential number of tactic notations that would be required.

Later I found a solution by Tej Chajed developed for the Iris proof mode
that translates strings into Coq identifiers1. This uses Ltac2 and converts
between the different string representations, but seems a bit hacky and might
break down in future versions of Coq2.

Right now this solves all of the problems but the other solution is also
supported, so you can intro either with strings or identifiers.

The fintro tactic is also the main driver of intro patterns. Every other
tactic that supports intro patterns internally calls fintro. For example if
your goal is C ` psi and you want to call fdestruct on a context formula
"H" : phi, the formula will be moved to the goal and fintro will be called
on C ` phi → psi using the user given intro pattern.

The implementation of the intro patterns is straightforward. They get
parsed into the inductive type intro_pattern and then recursively pro-
cessed. For example if you intro on phi ∧ psi → G using the pattern
"[P1 P2]", the goal gets turned into phi → psi → G and we intro re-
cursively using "P1" and "P2".

TODO
The parsing could be improved. At the moment additional white spaces
cannot be handled. See also the note in 2.5.1.

3.5 Application

The main driver behind the fapply and feapply tactic is a tactic called
fapply_without_quant. It takes a Coq hypothesis H : C ` p1 –> ...

1The code can be found here https://gitlab.mpi-sws.org/iris/string-ident
2For more detailed discussion see here https://github.com/coq/coq/issues/7922
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–> pn –> g and solves the goal C ` g by applying H and leaving the premises
C ` p1, ..., C ` pn for the user to prove.

The actual fapply and feapply tactic simply call this tactic and perform
some bookkeeping around it. One noteworthy trick is that quantifiers inside
the formula to apply with are instantiated with evars. This way they can
automatically be unified and the user does not need to give the arguments
explicitly.

Ideally the differentiation between fapply and feapply should be just like in
Coq. But fapply also uses the evars trick to handle unification and behaves
exactly like feapply internally. The current heuristic is that fapply fails,
if the goal still contains evars after the application. This obviously fails in
cases, were the goal already contained evars before the tactic was called.

TODO
This should be fixed. One would need to remember the names of the evars
that fapply created and only check for the existence of those in the goal.

3.6 Rewriting

The frewrite tactic is maybe the most complicated one. It supports rewrit-
ing under equality with the Leibniz rule and rewriting with logical equiva-
lences (but currently not under quantifiers). The equality predicate and proof
of the Leibniz rule are given by the user through the type class Leibniz.
While the rewriting with equivalences is performed through repeated appli-
cation of lemmas for each operator, I tried a different syntactic approach for
the equality rewriting. The general idea can be illustrated with the following
example in PA where x should be replaced with y:
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C ` σ x == z ∨ phi

C ` σ($0‘[x..]) == z‘[↑]‘[x..] ∨ phi[↑][x..]

C ` (σ $0 == z‘[↑] ∨ phi[↑])[x..]

C ` (σ $0 == z‘[↑] ∨ phi[↑])[y..]

C ` σ($0‘[y..]) == z‘[↑]‘[y..] ∨ phi[↑][y..]

C ` σ y == z ∨ phi

Replace x with $0‘[x..] and add identitiy
substitution [↑][x..] behind everything else

Move [x..] outwards

Apply Leibniz

Move [y..] inwards

Simplify

Sadly this scheme does not work, if the term to rewrite is behind a quantifier,
because a substitution s gets turned into up s inside the scope of a quantifier.
To address this, I generalize the idea by using a function up_n that gives the
iterated application of up:

C ` (∀ σ(x‘[↑]) == $0) ∨ phi

C ` (∀ σ($1‘[up_n 1 x..]) == $0‘[up_n 1 ↑]‘[up_n 1 x..]) ∨ phi[up_n 0 ↑][up_n 0 x..]

C ` ((∀ σ $1 == $0‘[up_n 1 ↑]) ∨ phi[up_n 0 ↑])[x..]

C ` ((∀ σ $1 == $0‘[up_n 1 ↑]) ∨ phi[up_n 0 ↑])[y..]

C ` (∀ σ($1‘[up y..]) == $0‘[up_n 1 ↑]‘[up y..]) ∨ phi[up_n 0 ↑][y..]

C ` (∀ σ(y[↑]) == $0) ∨ phi

Use up_n according to quantifier depth

Move [x..] outwards

Apply Leibniz

Move [y..] inwards

Simplify

Note that in the case of no quantifiers, we only use up_n 0 s which is equal
to s, so we get essentially the same as in the first example.
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TODO
There are some things that could be improved regarding the frewrite
tactic:

• Support rewriting in hypotheses

• Support equivalence rewriting under quantifiers

• Support frewrite ... at n

• If you want to rewrite under quantifiers, the term needs to be al-
ready shifted (in the example above it needs to be x‘[↑] under the
all quantifier). In some cases this is irrelevant because the term is
substitution invariant (for example num in PA). Provide a way for the
user to register such invariance lemmas and apply them accordingly.

• The evar trick from fapply does not work here because I use syn-
tactic matching to find occurrences of the rewrite variable. Thus
the user always needs to give the instantiation for variables. But
improving this might be tricky...
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