
Quantized Liquid State Machines:
Design and Implementation

Johannes Maurin Voshol
Faculty of Science

University of Antwerp
Antwerp, Belgium

johannes.voshol@student.uantwerpen.be

Abstract—paper presents a Liquid State Machine using a liquid
consisting of quantized neurons that are operating on lower-
bit representations and fixed point computations. It provides a
next step towards the implementation of efficient accelerators
that can be used in the field of neuromorphic computing. A
minimal implementation of the liquid is realized by only using
a neuron potential vector, weight matrix, a threshold value and
a leak function. These components all make use of the lower-
bit representation of the neurons. The liquid dynamics are not
event-driven, but simulated using a clock function. The Liquid
State Machine is tasked to predict a chaotic Mackey-Glass time
series as to compare various parameters in terms of accuracy
and efficiency. Parameters include the amount of bits used to
represent a neuron in the liquid, the liquid’s size and the influence
of different encodings to represent the time series. The accuracy
is measured by the minimal validation loss of the readout layer
and the efficiency is measured by the total amount of generated
spikes by the liquid. A liquid using 16 bit representations is used
as a baseline, as fractions of its values are closer to floating
point representations. The results show a 50% improvement in
efficiency at the cost of a 2% increase in validation loss for liquids
using only 2 bits. The best liquid in terms of accuracy is provided
using only 3 bits, with an 8% improvement in efficiency and a
5% decrease in validation loss. Moreover, the simplicity of the
model makes it easy to find parameters to balance the trade-off
between accuracy and efficiency.

Index Terms—neuromorphic engineering, liquid state machine,
quantization, time series prediction

I. INTRODUCTION

In machine learning, Recurrent Neural Networks (RNN)
have been studied extensively for processing temporal prob-
lems, such as time-series prediction, system control or iden-
tification, vision and speech [1]. However, training a RNN is
difficult as the recurrent property leads to exploding and van-
ishing gradient problems that get worse with long sequences.

Another approach to these problems is Reservoir Computing
(RC), where a nonlinear dynamic random recurrent network
(the reservoir) is initialized and left untrained. The state of this
reservoir is a high-dimensional representation of the processed
input sequence and can effectively be used for pattern analysis
by doing classification or linear regression. There are two main
types of reservoir computing. First, the Echo State Network
(ESN) is generally implemented as a conventional recurrent
network, where the dynamics operate on the edge of stability
by setting the sparsity of the connections via the spectral radius
[2]. The Liquid State Machine (LSM) is another type of RC

model implemented as spiking networks [3]. The biologically
inspired nodes in the reservoir of the LSM work with temporal
signals in continuous time. The asynchronous properties of
spiking neurons can improve the computational performance
and efficiency of the networks [4].

Neuromorphic computing, often called the third generation
of AI, is a relatively new but already major research field.
Its goal is to design and evaluate low powered accelerators
to broaden the applicability of new deep learning algorithms
based on spiking networks. This is nontrivial, as the evalua-
tion of brain-inspired algorithms on traditional (synchronous)
computers, often called the Von Neumann architecture, require
large amounts of time and power because of the memory
bottleneck. Therefore, neuromorphic accelerators try to dis-
tribute the memory over the architecture keeping it in close
proximity to the computing elements [4]. When embedding
Spiking Neural Networks (SNN) into these architectures, there
is a need to memorize the weights and other parameters of
the spiking neuron. Moreover, for the network to learn a task
using a learning rule like Spike-Timing-Dependent Plasticity
(STDP) [5], the parameters should also be adjustable.

It was shown that Quantized Neural Networks (QNN) using
lower-bit quantized weights and activations could achieve
prediction accuracies comparable to their 32-bit counterparts
[6]. It allows for replacing the floating point computations by
fixed point computations which drastically reduces memory
size, memory accesses and power consumption. Parameter
quantization of spiking neurons could simplify the hardware
architecture, as only the fixed point operations have to be
built into the circuit. In the case of an LSM, the weights are
static and left untrained, which makes quantization even more
appealing if the parameters can directly be embedded into the
circuits, making a highly efficient reservoir.

For this paper, a simple spiking neuron reservoir (liquid) is
implemented and evaluated with Python code to get insight
on its possibilities and limitations. The term ’simple’ or
’simplified’ is describing the question whether fancy state-
of-the-art techniques for spiking neurons (e.g. refraction or
delayed synaptic connections) are required to perform ade-
quately on simple tasks. Various lower-bit representations will
be compared. This is done in combination with a small range
of other parameters present in the model. The task of the LSM
is to do regression and predict the chaotic time series generated

Fig. 1. Data flow of a Liquid State Machine.

from the Mackey-Glass differential equation [7].
The results of this research must provide answers (or a

good starting point) to the questions: What is the minimal
set of parameters required to design an LSM, and which of
those parameters can be simplified while taking the accuracy
of the model into account? Specifically, can some of the
parameters like weights and neuron potentials be quantized
while maintaining adequate accuracy for the considered task?
If this last question can be answered with ’yes’, then it offers
potential to repeat parts of the experiments on a physical
accelerator.

Section II describes the formal design choices of the sim-
plified LSM, along with the hyper-parameters that are being
used. It provides a complete description on the dynamics of the
liquids used in this research. The dataset and the metrics that
are being used to evaluate the liquid are described in Section
III. The experiment setup and the obtained experiment results
are interpreted and discussed in this section as well. Finally,
the paper is concluded in Section IV, where we will look back
at the main questions and answer them based on the results
found in Section III.

II. METHODS

The physical hardware is not required to analyze the ac-
curacy of the simplified model. We can simulate the asyn-
chronous neuromorphic model on a synchronous computer
to draw conclusions on the properties before designing the
accelerators. However, this implementation uses a clock to
transition to the next state. This means that the firing of neu-
rons happen in discrete time-steps, leading to different results
compared to the more advanced event-driven implementation
of other neuromorphic systems.

A. General Framework

There are many components in an LSM that must be taken
into account besides the dynamics of the reservoir. Figure
1 visualizes the complete data flow of the model to be
implemented. First, the input signal xT is encoded to a neural
representation u consisting of timed spikes that captures the
(analog) information of the input signal. The details of the
spike encoding are further discussed in section II-C. However,
this encoding step in not necessarily part of the LSM itself
as research is being done on neuromorphic sensors where
the data already has a spike representation [8]. The input
spikes are fed to the liquid in sequence while the output
spikes are being recorded. The output is a history-dependent

representation of the input and must first be decoded to an
analog signal to work with the linear (memory-less) readout
layer that makes predictions. Since the output signal is a high-
dimensional representation, a single fully connected layer is
sufficient to do regression.

There are multiple advantages of creating a pipeline where
each step is applied on the complete dataset, instead of
applying all the steps sequentially on each value in the time-
series. First, the input signals and its encoded input spikes
are static over all the experiments using that dataset. It is
therefore efficient to calculate these spikes only once. Second,
if the readout layer were to train on the data sequentially with
a high learning rate, the readout layer might forget previous
learned regression. This is due to the output data of the liquid
being very correlated within a given time frame. Replay is
implemented by collecting all the decoded output spikes prior
to training and let readout layer to learn on shuffled batches.
This can improve the stability and accuracy of the readout
layer.

B. Liquid dynamics

v(0) = 0

v(t) = W
(b)
in u(t) +W (b)s(t) + v′(t)

The vector v represents the current membrane potential of
all the neurons present in the liquid and starts with 0 potential.
Neurons spike whenever the membrane potentials exceed the
threshold δb. The binary vector s represent the spikes following
from the current membrane potential and vector v′ represents
the new membrane potentials after the spikes are extracted
and the spiking neurons are reset to 0 potential. Over the
neurons that do not spike a leak function is applied to reduce
its membrane potential.

The external input spikes of the time series are represented
by u. Matrices Win

(b) and W (b) represent the weighted
connections used to add u to the liquid and direct the internal
spikes of the liquid. To calculate the next membrane potential,
v(t− 1) is split into s(t) and v′(t) that are then combined to
calculate v(t).

si(t) =

{
1 if vi(t− 1) > δb

0 otherwise

v′i(t) =

{
0 if vi(t− 1) > δb

leak(vi(t− 1)) otherwise

1) Quantized neurons: For this study, the neurons in the
liquid are quantized in their membrane potential as well as
their connection weights. They are represented with natural
numbers from a predefined set. The reasoning is that these
representations further simplify the implementation of the
hardware architecture. To simplify the system even further,
the quantized neurons only have access to b bits to represent
their membrane potentials and weights. With this, the floating
point fractions are completely removed from the liquid.

wb = {0, 1, ... , 2b − 1} (for b bits)

The neurons are connected using values from a discrete set
of weights wb, that contains all the values that b bits can
represent. The values in the set are evenly distributed and the
probability of selecting the a weight for each connection is
the same. Therefore, the average strength of a connection is
therefore 2b−1. As seen in Equation II-B, a spike is generated
whenever the threshold δb of a neuron is exceeded. Its mem-
brane potential is then set back to 0. In this implementation,
the threshold value was deliberately set to 2b − 1. It allows
for a neuron to spike whenever an integer overflow occurs
after their membrane potential is increased. From here on,
a liquid constructed using b bits will be referred to as a b-
liquid. As the neuron potentials cannot be represented using
floating point numbers, a different representation must be
implemented to simulate the exponentially decreasing leak.
A simple subtraction is preferred over a division. The b-
liquids in this research use a bit-wise leak based on the current
neuron potential. This operation does not seem efficient, as the
computation of a log and an exponent operation is required.
However, this can be easily implemented. Using bit-wise
operations, the function finds the highest 2-power in the liquid
and divides this by 2λ. This value can then be subtracted
from the potential. Moreover, calculating the leak this way
guarantees that the value will always be of the form 10..02 (a
1 followed by zeros) making it an easy operation to subtract
from the potential.

leak(x) = x−max(1, 2floor(log2(x))−λ)

Using this approach, the leak will be the same for the
potentials 2k − 1 and 2k−1, resulting in an effective dynamic
leak in the ranges between 0.75 and 0.875. This implication
was not proven to be a problem during the experiments. As
the liquid uses only natural numbers, the leak has to be a
minimum of 1, hence the max operation. This changes the
behavior of the leak per value of b. Neurons using large values
for b do not leak their potential slower, but rather have more
time to leak very small fractions of their potential in later
time steps, whereas neurons using small values for b have
relative larger step sizes in their leak and reach a 0 potential
relative faster. This is illustrated in Figure 2 with the use of
a log scale. The dynamic leak can also be noticed, as the
potential is not decreasing in equal steps. However, the bit-
wise leak does approximate the exponentially leak well as
the graph looks linear from the perspective of a log scale. It

Fig. 2. Bit-wise leak of neurons using b amount of bits.

shows that for a Leaky Integrate Fire (LIF) using lower-bit
representations for potential, threshold and leak can still be
effectively implemented.

2) Neuron connections: Signals between neurons may be
excitatory, where one neuron stimulates another neuron to
also fire, or can be inhibitory, which causes the neuron to
repress another neuron. This can easily be simulated by setting
positive or negative weights for the excitatory and inhibitory
connections respectively. N = 1, 2..., n denotes the set of
indices of the vectors and matrices that corresponds with all
the neurons present in the liquid. The set corresponding with
excitatory- and inhibitory neurons is captured in E and I
respectively, where N − E = I . The balance of excitatory-
and inhibitory neurons is important. Using too few inhibitory
neurons may cause the liquid to spiral out of control as there is
too much energy (potential of the membranes) in the system.
This results in the loss of temporal information of recent
inputs. On the other hand, temporal information is also lost
when setting the amount of inhibitory neurons too high, as it
leads to a liquid where neuron potentials easily fall flat. A right
balance is achieved by setting the ratio of inhibitory/excitatory
neurons to 1/4.

The matrices W (b)
in and W (b) represent the the connections

from and to the neurons in the liquid as well as define the
weights of those connections. Whenever a connection between
two neurons is added, its weight is sampled uniformly from
wb. It is a static parameter but serves an essential role in the
dynamics of the liquid described in Equation II-B.

The sparse matrix W (b)
in of size |N | × |U | adds the input u

to the membrane potential. Here, U depicts the set of indices
for the input channels. One input channel is connected to one
or more neurons in the liquid. Its sparsity can be regulated by
specifying α, the percentage of neurons one input channel is
allowed to connect to. It is common practice to input only to
excitatory neurons, hence the 0 for connections to inhibitory
neurons.
W (b) is an |N | × |N | sparse connection matrix for in-

ternal neurons in the liquid. To visualize the separation of
the incoming and outgoing connections for excitatory and
inhibitory neurons, two lines have been added to the matrix.
The amount of outgoing connections of a neuron and whether
it should connect to an excitatory or inhibitory neuron is

described by the constant c, which is a tuple that consists of
4 values indicating the amount of random connections from
excitatory/inhibitory to excitatory/inhibitory neurons.

W
(b)
in =


w1,1 w1,2 · · · w1,|U |
w2,1 w2,2 · · · w2,|U |

...
...

. . .
...

w|N |,1 w|N |,2 · · · w|N |,|U |


∀i ∈ E, ∀j ∈ U : wij ∈ wb (excitatory)
∀i ∈ I, ∀j ∈ U : wij = 0 (inhibitory)

W (b) =



w1,1 w1,2 · · · w1,|E| · · · w1,|N |
w2,1 w2,2 · · · w2,|E| · · · w2,|N |

...
...

. . .
...

. . .
...

w|E|,1 w|E|,2 · · · w|E|,|E| · · · w|E|,|N |
...

...
. . .

...
. . .

...
w|N |,1 w|N |,2 · · · w|N |,|E| · · · w|N |,|N |


∀i ∈ N, ∀j ∈ E : wij ∈ wb (excitatory)
∀i ∈ N, ∀j ∈ I : −wij ∈ wb (inhibitory)

C. Spike coding

1) Encoding: For the liquid to process our time series to
a higher dimensional output, the signal must be represented
as spikes. There are two types of encoding considered in this
paper: temporal encoding and rate encoding. Other types of
encoding like population and sparse coding are not considered
due to the scope of the project. Rate encoding relies on the
actual value of the signal. Spikes are generated at times steps
when the value of the signal is also high. One problem with
this type of encoding is that it takes many (unnecessary) spikes
to represent a signal that is high for longer periods of time.
However, it may be easily implemented by feeding the signal
directly to a layer of spiking neurons that have a threshold
adjusted to the input signal. We will call this encoding Spiking
Neuron Encoding (SNE). Temporal encoding is the second
type of encoding. This technique is more popular for repre-
senting signals because of their efficiency. The spikes are only
generated whenever the signal changes in value, hence the term
temporal. In other words, temporal encoding is effectively still
a rate encoding over the derivative of the signal. The property
of temporal encodings to transfer required information faster
than a rate encoding can be useful. Systems that have to
make quick decisions based on changes in the environment
benefit most from a temporal encoding. However, a temporal
encoding cannot be represented in a single stream of binary
spikes. It requires either the use of negative spikes, which does
not work for the liquid, or a second stream using positive
spikes representing the negative spikes. The implementation
of the temporal encoding used in this research is based on the
Step-Forward (SF) algorithm [9]. Thresholds for the temporal-
and rate encoding algorithms are chosen to yield the same
average amount of spikes for a time series. Besides this, the
percentage of neurons to input the spikes to are also chosen

to provide good liquid dynamics and is represented with α.
When using the encodings separately, this value is set to 20%
of the neurons in the liquid. This value is decreased to 10%
when the encodings are used in combination, as double the
amount of spikes are presented to the liquid.

2) Decoding: One way to represent the state of the liquid
xM could be to take the membrane potential v, but then the
spatio-temporal patterns of the liquid are not represented. To
represent the liquid state, it is better to take the sum of all the
spikes s over the last τ time-steps into account.

xMi (t) =

τ∑
n=0

γnsi(t− n) ∀i ∈ E

By definition this is an exponentially decreasing rate decod-
ing using a sliding window. Following the literature, the state
of the liquid will be only based on the output of excitatory
neurons. It is important for the discount γ not to be too small,
as it possibly flattens older values in the window to 0, making
part of the sliding window unusable. When setting γ too high
in combination with a large window size, recent spikes hardly
affect the liquid state. This causes the decoder to react too late
to recent information provided by the liquid and complicates
the learning process of the readout layer. The parameters τ
and γ are balanced to optimize the memory size of the stored
data (e.g. τ ≤ 50) and its containment of information (e.g.
γτ−1 ≥ 0.1), which includes adjusting τ to the pace in which
the temporal data is presented and processed. A time series that
is highly volatile in a short time frame requires the decoder
to react fast to the changes.

D. Readout

After initialization of the liquid, the readout is the only
component of the LSM with trainable parameters. It consists
of a single fully connected layer fθ to do regression or
classification. The readout does not have to be be any deeper,
as the output of the liquid is already a high dimensional
representation of the processed input. The task in Section III
will be to predict a time series k time steps ahead. In this
notation, x and y present the continuous signals of the (to-be
predicted) time series T and model representation M .

xT (t+ k) = yT (t) ≈ ŷM (t) = fθ(x
M (t))

To train the readout, the mean squared error (MSE) is
generally used as the loss function. The mean absolute error
(MAE) was considered, but did not yield better results given
our prediction task. If our regression task would be converted
to a classification task where predicting the exact peaks of the
time series is not necessary, then MAE could possibly serve
useful. The network was trained using the stochastic optimizer
Adam [10].

L(yT , ŷM) =
1

n

n∑
i=0

(yTi − ŷMi)2 (MSE)

E. Hyper-parameters

1) Static parameters: Up until this point, many vari-
ables and terms were introduced that can be seen as hyper-
parameters of our system. Some of the parameters can be set
to a specific values that have been proved to be good values ac-
cording to the literature. This includes the excitatory/inhibitory
ratio and the neuron connections c. Other parameters like the
neuron threshold, weights and leak have been successfully
rewritten in terms of b bits or other as a small sets of integers
which reduces the hyper-parameter space drastically. The one
important hyper-parameter of the liquid will thus be the the
amount of bits available to the neurons. It is also important to
experiment how the input signal can best be represented to the
readout by selecting the best encoder, input ratio and amount
of neurons for the liquid. Figure 3 shows the table of static-
and experimental parameters.

F. Implementation details

The LSM described in the sections above was fully im-
plemented in Python with use of the NumPy and PyTorch
libraries. They allow for high level vector and matrix com-
putations that are also highly optimized in c++ in the back-
end. Moreover, the PyTorch library makes it possible to
train the readout layer on a GPU. In most cases, running
the liquid took more computational time than training the
readout layer, especially for simulating large liquids. Future
improvements might include switching to CuPy, which is an
GPU accelerated version of NumPy. As previously stated, this
liquid implementation is not event-driven but works with a
tick function. The classes in the repository implement each of
the steps of the data flow.

III. RESULTS AND DISCUSSION

A. Dataset

The time series used for the experiments is based on the
Mackey-Glass differential equation [7]. To provide a simple
overview, the derivative at time step t of the time series is
based on the actual value at time step t− τMG. The time series
looks very chaotic, but if the liquid can manage to memorize
the values from the past, the readout will be able to predict
the next value. For all experiments, a time series is generated
with a length of 5000. This length makes sure that it does not
take too much time to run the liquid but still provide enough
samples for the readout to learn from.

The encoded time series is run though the liquid and then
decoded. This bulk of data is then split into three separate
sets. First, a (small) test set is taken from the final k time
steps of the liquid output. The remaining data is randomly split
into a training (80%) and validation (20%) set. The readout
layer will train on the training set while evaluating on the
validation set after every epoch. The samples of the validation
set are different from the training set, but are still highly
correlated. Overfitting should be avoided by monitoring the
training process, keeping the validation and training loss close
over time. For the test set, this correlation will be less as it is
captured in the time steps after the training set. It can thus be

Static parameters
Parameter Value Description
|E|/|N | 80% Excitatory/inhibitory ratio
δb 2b − 1 Neuron threshold
λ 2 Leak exponent
τ 50 Sliding window size
γτ−1 0.02 Sliding window leak
c (2, 2, 1, 1) Neuron connections
k +20 Prediction task
(τMG, a, b,
n, x0, h)

(17, 0.2, 0.1,
10, 1.2, 1)

Mackey-Glass parameters

Experimental parameters
Parameter Set Description
|N | {50, .., 2000} Liquid size
b {1, 2, 3, 4, 6, 8, 16} Bits
α {10%, 20%, 30%} Neurons per input channel
Encoder {SF, SNE, SF+SNE} Signal encoding

Fig. 3. Parameters that will be kept the same across experiments and
parameters that will be compared during the experiments. Note that the
parameters of the readout layer are not compared due to the scope of the
project.

used to test our predictions on the final output of the liquid.
These are the actual predictions that are most interesting.

B. Metrics

To evaluate the b-liquids in terms of accuracy and efficiency,
two metrics are needed. As shown in Section II-D, the minimal
loss for the validation set is used to measure the accuracy of
our model. As the hyper-parameters of the readout layer are
static, it measures the quality of our liquid indirectly. This
loss may vary across experiments, but the relative loss within
the experiments still show the best parameters for the liquid.
Measuring the activity of the liquid (in combination with the
accuracy) is important, as it shows efficiency of the model.
Moreover, a low activity also means that the actual power
consumption of the physical accelerator will be lower. The
activity is calculated by summing up the total spikes s in the
liquid for each time step. It can be displayed as the absolute
activity representing the power consumption of the model. It
can also be displayed as the relative activity compared to the
size of the liquid. Another metric is the total energy of the
system, which is calculated by averaging the neuron potentials
of v over all the time steps. It does not necessarily display the
efficiency of our model, but it can still provide insights on the
dynamics of the liquid.

ActivityM (t) = 1
|N | · s(t) · 1

EnergyM (t) = 1
δb·|N | · v(t) · 1

C. Experimental results

Various liquid sizes are compared over the the same input
signal in Figure 4. The liquid must be large enough provide
the readout layer with a rich representation of the processed
data. For this specific task, increasing the liquid size from a
low 50 to 500 improves the accuracy drastically. Whenever
the liquid has a size larger than 700, the accuracy is getting
worse, further reducing the efficiency. The 2-liquid is not
under-performing, but increasing the neuron representations
to 3 bits drastically improves the accuracy. On the other hand,

Fig. 4. Finding the optimal liquid size |N | and visualizing the activity for various b-liquids tasked to predict a signal using only a temporal encoding and
α = 30%. Each data point represents a median and quartiles over 30 samples.

Encoder SF SNE SF+SNE
α 20% 20% 10%
avg u 0.356 0.354 0.710

b Relative Activity
2 0.7% 0.3% 1.4%
3 1.6% 1.4% 3.2%
4 1.3% 1.7% 3.2%
6 1.3% 1.6% 3.5%
8 1.6% 1.4% 3.7%

16 1.6% 1.5% 3.5%
b Accuracy (L · 104)
2 233 157 37
3 93 101 26
4 80 82 24
6 78 61 26
8 57 70 26

16 56 69 25

Fig. 5. Activity and accuracy of various b-liquids (|N | = 600). Here, α
is chosen such that the inputted energy to the liquid is the same across
experiments. The average u represents the average amount of spikes inputted
to the liquid at each time step. The results are the averages over 10 randomly
generated liquids.

b Average
L · 104

Best
L · 104

Absolute
Activity

Epochs
L · 104 < 30

16 26.3 21.5 43.7 316
2 26.2 (-0.4%) 22.3 (+3.7%) 20.9 (-52%) 139 (-56%)
3 24.3 (-7.6%) 20.4 (-5.1%) 39.9 (-8.7%) 239 (-24%)
6 25.4 (-3.4%) 22.0 (+2.3%) 43.2 (-1.1%) 284 (-10%)

Fig. 6. Accuracy and activity of various b-liquids tasked to predict a Mackey-
Glass timeseries. The results are the averages over 20 randomly generated
liquids (|N | = 500, λ = 2, |T | = 5000, α = 10%, yT (t) = xT (t +
20), lr = 0.0005, epochs = 800)

the 2-liquid is almost 2 times more efficient compared to the
other b-liquids. The trade-off between accuracy and efficiency
for 2 and 3 bits is clearly noticed in this experiment. Figure 5
further illustrates this trade-off. It also shows that combining a
rate- and temporal encoding drastically improves the accuracy
at the cost of efficiency. In the other experiments, four models
are compared. First, 2/3-liquids are considered as the trade-off
could already be seen in previous observations. The results for
a 6-liquid are shown as this model often provided the best
accuracy. Lastly, floating point weights are not possible to
measure in this implemented system. Therefore, a 16-liquid is

used to mimic the fractional properties of floating point values.
In Figure 6, a 16-liquid is used as a baseline. All the lower-
bit liquids provide better accuracies on average. Moreover, the
best accuracy of all the models is provided by a 3-liquid. Its
validation loss is 5% lower compared to the best 16-liquid
whilst having a lower activity.

The intermediate states of the LSM are visualized in Figure
7. It shows the last 300 time steps of the time series, where
the last 150 time steps are part of the test set. The following
observations can be made: (6a) For 3-liquids and below, the
fast leak is significantly present in the liquid. The energy levels
are more volatile and even drop to 0 from time to time, which
means that there is a significant loss of information (memory
reset) at those time steps. (6b) All 3-liquids and above share
the same density in their output spikes. (6c) Using a 2-liquid,
a lot of neurons do never spike as illustrated in the (almost
empty) decoded output. (6e) A low learning rate is applied
during the training phase to reduce the variance. The epochs
are therefore increased. This way, the plateaus can be clearly
shown. The 2-liquid provides less complicated data for the
readout layer and with that, makes the training much faster.
However, the learning curve also plateaus faster. The loss for
a 16-liquid descents slower as the decoded spikes are more
complicated because the set of discrete values is much larger.

D. Discussion

Whenever a single bit is used to represent the neurons in
the liquid, the binary spikes between the neurons are not
strong enough to push neuron potentials above the threshold
before leaking back from 1 to 0. The provided results are thus
not containing measurements for b = 1. Running this liquid
without a leak results in a high activity liquid that does under-
perform compared to the other liquids. However, it has an
activity that is about 20 times the activity of the other liquids.

The weight matrices of the liquid are randomly generated
based on the outgoing connections specified by c. In this
paper, neurons are not verified whether they have at least
one incoming connection. When using the value (2, 2, 1, 1),
this always results in roughly 5% of neurons not having any

incoming connections from either liquid neurons and inputted
spikes. These neurons are considered dead neurons. This ought
to be improved to reduce the unnecessary waste in memory.

There are a few hyper-parameters that must be chosen to
construct a b-liquid. The main strategy of choosing these
parameters would be to first select them at random with a large
enough liquid size. Then work from front to end in the LSM
selecting the best parameters in the order: encoding, liquid
size, b value and then decoding. The relative difference in
accuracy stays the same when testing parameters. For example,
changing the b values does not change the optimal liquid size
by much. This is also true for the amount of epochs required
to train the readout layer. Parameters can easily be tested on
a subset of the time series where the readout is trained for a
short time. Moreover, when the readout is provided with a rich
representation of the input signal, implicating that the liquid
dynamics are well adjusted, the gradient descent will be faster.

Using multiple encodings per input signal will always
provide the best results, as the information of the signal is
better captured. However, this goes at the cost of efficiency as
a larger liquid size is required. If the task of the model is to
react to changes in the data, a single temporal encoding would
suffice.

Selecting the minimal amount of bits depends heavily on the
task of the model. A 2-liquid is not the best performing model
in terms of accuracy, but it is the best performing model in
efficiency. At the cost of one bit, the increase in accuracy using
a 3-liquid is significant, although its efficiency decreases. All
the 4-liquids and above share the same accuracy. The 6-liquid
performed best in these experiments, but the 2 extra bits for
a slight accuracy increase might not be worth it.

Changing the leak exponent λ to other values did not change
the accuracy by much. This is always true for the lower-bit
neurons, as the minimum leak stays 1 for all values of λ.
For the higher-bit neurons, a higher leak (lower λ) resulted in
less activity, but not in better accuracies. The implementation
of the leak could also be further adjusted to better capture
the exponential decrease of lower bit rates. Slowing down the
leak for lower-bit weights could be achieved by only leaking
every n time steps after the last spike was received. This would
however bring more complexity to the implementation.

For simplicity and reduction of the hyper-parameter space,
the threshold was expressed in terms of parameter b. This
parameter was set to be equal to the maximum strength of
the weights. This is unlike the values used in the literature as
one spike should not always lead for another neuron to spike.
This parameter could be further researched by setting it to an
arbitrary value or, to keep the simple overflow model, to a
value double the size (δb = 2b+1 − 1).

IV. CONCLUSION

A liquid and its dynamics play an important role in a LSM.
It can be represented and effectively utilized in a simple
manner by using a neuron potential vector, weight matrix,
threshold and a leak function. All without the use of other
techniques like refraction or delayed synaptic connections.

Moreover, it was shown that the neurons in the liquid can
effectively be quantized. First, the state of a neuron can
be represented only using integer values represented by b
bits. Its dynamics can be implemented only using fixed-
point computations. This drastically reduces memory size and
power consumption. Second, the results showed that all the
lower-bit liquids using these type of neurons performed well
in terms of accuracy and activity compared to a 16-liquid
baseline. Lastly, the simplicity of the model looks promising
and provides opportunities for other downstream tasks. Its
parameters can easily be considered and adjusted to balance
the trade-off between accuracy and efficiency. Further research
could demonstrate the implications of using an event-driven
b-liquid, taking the next step towards the implementation of
efficient liquid accelerators.

SUPPLEMENTARY MATERIALS

The Python implementation and Jupyter noteboook can both
be found at: github.com/m4urin/SimpleLSM

ACKNOWLEDGMENT

I am thanking Werner Van Leekwijck and Tsang Ing Jyh
for their exceptional support during the semester and the
reviewing of this paper. Writing this research paper would not
have been possible without the many weekly meetings, where
they provided knowledge, insight and expertise on many topics
in the field of neuromorphic computing.

I am also grateful for the helpful comments offered by my
good friend, Matthias Tavasszy.

REFERENCES

[1] Schrauwen, Benjamin, David Verstraeten, and Jan Van Campenhout. ”An
overview of reservoir computing: theory, applications and implementa-
tions.” Proceedings of the 15th european symposium on artificial neural
networks. p. 471-482 2007. 2007.

[2] Jaeger, Herbert. ”The “echo state” approach to analysing and training re-
current neural networks-with an erratum note.” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report 148.34 (2001): 13.

[3] Maass, Wolfgang. ”Liquid state machines: motivation, theory, and ap-
plications.” Computability in context: computation and logic in the real
world (2011): 275-296.

[4] Bouvier, Maxence, et al. ”Spiking neural networks hardware imple-
mentations and challenges: A survey.” ACM Journal on Emerging
Technologies in Computing Systems (JETC) 15.2 (2019): 1-35.

[5] Grüning, André, and Sander M. Bohte. ”Spiking neural networks:
Principles and challenges.” ESANN. 2014.

[6] Hubara, Itay, et al. ”Quantized neural networks: Training neural net-
works with low precision weights and activations.” The Journal of
Machine Learning Research 18.1 (2017): 6869-6898.

[7] Mackey, Michael C., and Leon Glass. ”Oscillation and chaos in physi-
ological control systems.” Science 197.4300 (1977): 287-289.

[8] Dupeyroux, Julien. ”A toolbox for neuromorphic sensing in robotics.”
arXiv preprint arXiv:2103.02751 (2021).

[9] B. Petro, N. Kasabov and R. M. Kiss, ”Selection and Optimization of
Temporal Spike Encoding Methods for Spiking Neural Networks,” in
IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 2, pp. 358-370, Feb. 2020, doi: 10.1109/TNNLS.2019.2906158.

[10] Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

https://github.com/m4urin/SimpleLSM

Fig. 7. Visualization of the intermediate LSM stages. Four b-liquids are tasked to predict a Mackey-Glass timeseries. In this experiment, the parameters are
the same as Figure 6.

	Introduction
	Methods
	General Framework
	Liquid dynamics
	Quantized neurons
	Neuron connections

	Spike coding
	Encoding
	Decoding

	Readout
	Hyper-parameters
	Static parameters

	Implementation details

	Results and Discussion
	Dataset
	Metrics
	Experimental results
	Discussion

	Conclusion
	References

