
Teach Variability! A Modern University Course on Software
Product Lines

Elias Kuiter
kuiter@ovgu.de

University of Magdeburg
Magdeburg, Germany

Thomas Thüm
t.thuem@tu-braunschweig.de

TU Braunschweig
Braunschweig, Germany

Timo Kehrer
timo.kehrer@inf.unibe.ch

University of Bern
Bern, Switzerland

Abstract
Teaching software product lines to university students is key in
disseminating knowledge about software variability. In particu-
lar, education is needed to train new researchers and practition-
ers and, thus, sustain further research on software product lines.
However, preparing appropriate teaching material is difficult and
time-consuming, even when relying on existing literature. Thus,
clone-and-own is a common practice among educators, with all its
associated issues. Moreover, there is a lack of full-semester, open
courses on software product lines. In this paper, we report on our
experience of architecting and designing such a course from scratch,
avoiding clone-and-own entirely. In addition, we perform a liter-
ature review of influential books on software product lines and
which topics they cover. We position our course in terms of these
topics, discuss how it compares to existing courses, and justify
relevant design decisions. With our course, we aim to strengthen
the positive interactions between research, industry, and education.
So far, our course has already been held seven times across five
universities. A preliminary evaluation of our course indicates that
our course is mostly well-received by students.

CCS Concepts
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering → Software product
lines.

Keywords
open educational resources, software product lines
ACM Reference Format:
Elias Kuiter, Thomas Thüm, and Timo Kehrer. 2025. Teach Variability! A
Modern University Course on Software Product Lines. In 19th International
Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS 2025), February 04–06, 2025, Rennes, France. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3715340.3715441

1 Introduction
Software variability is ubiquitous, as many software systems are
configurable [11, 12, 45, 65]. Software product lines (SPLs) [7, 20, 56,
67] are awell-known paradigm in research and practice [5, 10, 19, 26,
30, 54, 59] that apply systematic reuse to manage such variability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VaMoS 2025, February 04–06, 2025, Rennes, France
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1441-2/25/02
https://doi.org/10.1145/3715340.3715441

Education

Research Industry

train
researchers

train
practitioners

teach state
of the art

transfer

inspire

Figure 1: Interactions of research, industry, and education.

SPLs promise reduced costs for development and maintenance,
faster time-to-market, and improved quality [7, 36, 40, 67].

Education at universities plays an important role in disseminat-
ing knowledge about SPL engineering [2]. First, it gives students
the required tools to identify opportunities for beneficial software
reuse in industry. Second, it is instrumental in teaching the next
generation of SPL researchers. Third, education interacts positively
with research, as students can participate in experiments and re-
search projects, the results of which might then feed back into
education. In Figure 1, we visualize these interactions between
research, industry, and education as they can be observed in the
context of SPLs. One arrow is less pronounced: This is because the
industry typically has limited direct influence on education, besides
occasional guest lectures. Thus, the responsibility to teach students
appropriate skills mostly lies with educators (often researchers [2]),
who need to balance the interests of both research and industry.

To achieve this balancing act, having appropriate teaching mate-
rial is key. However, preparing such material is difficult and time-
consuming, even when relying on existing books [2, 51]. Moreover,
educators perceive that there is a lack of recognition for such ef-
forts [60]. Thus, a common strategy among educators has been to
use existing teaching material and only slightly adapt it [2] (e.g.,
by adding topics of their own). While such a clone-and-own [6, 24]
strategy is tempting, over time it might lead to outdated or incorrect
information, scope creep, and licensing issues. As long-time main-
tainers of clone-and-own teaching material, we can anecdotally
confirm that such issues have repeatedly come up over the years.

Besides clone-and-own issues, creators of SPL teaching material
seem to struggle with completeness and openness. To illustrate
these problems, we collect SPL teaching material that is publicly
available, and we show all complete English courses that we find
in Table 1. In particular, this table is quite short with five entries,
which is likely due to two reasons: First, much SPL teaching mate-
rial only consists of one or two lectures in the context of a larger
course (e.g., as a cross-cutting concern in a course on software en-
gineering). While individual lectures can teach the basics [21, 52],

https://doi.org/10.1145/3715340.3715441
https://doi.org/10.1145/3715340.3715441
Elias Kuiter
This is the author's version of the work. The main goal of this PDF is to give up-to date comments and information around the work, including follow-up work and already identified mistakes.

If you have any questions or comments, please get in contact with the authors.

VaMoS 2025, February 04–06, 2025, Rennes, France E. Kuiter et al.

Table 1: Publicly available complete English courses on SPLs.

Authors Year University Literature Open?

Acher and Heymans1 2011 Namur — #
Kästner and Apel2 2015 Pittsburgh [7] #
Lopez-Herrejon and Rabiser3 2016 Linz [20, 56, 67] #
Donohoe and Northrop4 2020 Pittsburgh [20] G#
Gay and Berger5 2022 Gothenburg [7, 67]

Thüm, Kehrer, and Kuiter7 2024 (6 universities) [7, 50]

License unclear, no sources G# Open license Open license, sources available

We consider all material that is available in the online repository6 of Acher et al. [3].
In addition, we consider material we found with the following Google search:
"software␣" ("product␣line" | "variability") ("␣course" | "␣slides")
We only include complete English courses that are mostly concerned with SPL topics.
A more detailed version is available in our online appendix.7

we believe that full-semester courses on SPLs are necessary to pos-
itively contribute to the interactions depicted in Figure 1. Second,
many courses on SPLs are never released publicly [18, 61] (e.g.,
due to clone-and-own issues). Even for publicly released courses,
their license may be unclear or their sources not available, as we
observe for some courses1−3 in Table 1. This severely limits the ma-
terial’s potential for adaptation and reuse. While the next course4
is openly licensed (CC-BY-4.0), its sources are not available, so no
custom adaptations can be made. Indeed, we are only aware of one
complete course on SPLs5 with published and openly-licensed (CC-
BY-SA-4.0) sources available. However, this course has only been
released in PowerPoint format (originally Google Slides). While
these tools allow for collaboration to some degree, they still invite
problematic clone-and-own practices for performing adaptions, and
therefore limits the course’s reusability. We contacted an author of
each course in Table 1 and asked them whether they are aware of
their course being adapted to other universities (not considering
affiliation changes of the course authors). We found that only one
course3 had been adapted to another university (i.e., Karlsruhe).

Evidently, the SPL community is missing a collaborative effort
to create a new, modern full-semester university course on SPLs,
which should be openly licensed and widely applicable. In this
paper, we strive to fill this gap by reporting on our experience
of architecting and designing such a course. Our aim is twofold:
First, we want to avoid the above-mentioned problems of clone-and-
own with existing courses. Second, we want to offer a modern SPL
curriculum based on practical topics and recent research results.
Thus, we decided to create a new course from scratch (i.e., proac-
tively [41]). Since September 2022, our course has already been held
seven times across five universities (i.e., in Bern, Ulm, Wernigerode,
Magdeburg, and Paderborn). Currently, three new iterations of the
course are ongoing, one of them at a new, sixth university (i.e., in
Braunschweig) with more than one hundred course participants.

In particular, we contribute the following:

1http://teaching.variability.io/namur.html
2http://www.cs.cmu.edu/~ckaestne/17708
3http://teaching.variability.io/jku2016.html
4https://insights.sei.cmu.edu/library/introduction-to-software-product-lines-course
5https://greg4cr.github.io/courses/fall22tda594
6https://teaching.variability.io

• We publish a course on SPLs with slides for 12 new 90-minute lec-
tures, whichwe created and refined over the last three years.7 Our
slides are released under the permissive CC-BY-SA-4.0 license8
and can be easily adapted to other universities with LATEX. We
also publish video recordings of each lecture under this license.9

• We describe and justify the scope and goals of our course (cf.
Section 2), howwe align its architecture (cf. Section 3) and lecture
design (cf. Section 4) accordingly, and how we address several
potential adoption challenges (cf. Section 5).

• We perform a literature review of topics covered in influential
books on SPLs. Based on this review, we discuss how our course
addresses each topic, and where we deviate from the books. Using
our review, educators can choose suitable literature and avoid
redundancies when they create new SPL teaching material. We
also compare the contents of our course to existing courses (cf.
Table 1), so educators can easily decide which material to use.

• We perform a preliminary evaluation of our course, which is
based on feedback from 64 students across six teaching evalua-
tions. We find that our course is mostly well-received by students
and that it performs favorably in comparison to other courses.

With this, we build on a previous survey of SPL teaching practices
by Acher et al. [2], who identified the need for such a curriculum.

2 Course Scope and Goals
What constitutes a modern course on SPLs? In the following, we
define four goals (G1–4) that narrow the format and scope of our
course. We justify why we deem the chosen goals to be reasonable
premises to build our course on. We begin with generic goals and
get more specific, such that each goal is derived from previous ones.

G1 Connect Research, Industry, and Education As we show
in Figure 1, education plays a key role in connecting research and
industry. To support and strengthen this connection, we aim to:

• describe the state of the art, prioritizing recent sources [18]
• include insights from recent research, pointers for further reading,
and references for claims

• discuss open challenges, which lay a foundation for lectures on
research (to train researchers) or industry (to train practitioners)

As we are researchers, our perspective is bound to be rather
research-oriented. While we largely embrace this perspective, we
also aim to recount experiences from industry for motivation (e.g.,
based on our collaborations with industry partners).

G2 Invite Contributions We aim to release our course in form of
open educational resources. UNESCO [66] defines these as “learning,
teaching and research materials in any format and medium that
reside in the public domain or are under copyright that have been
released under an open license, that permit no-cost access, re-use,
re-purpose, adaptation and redistribution by others.” This promises
several benefits over a non-distributed, closed-source course [51]:

• It enables students to participate who are not enrolled at a uni-
versity or whose university does not offer a course on SPLs.

7Artifact with online appendix: https://doi.org/10.5281/zenodo.14417094
Repository: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

8https://creativecommons.org/licenses/by-sa/4.0/
9https://www.youtube.com/playlist?list=PL4hJhdKDPIxha8So7muX2zfNUU8NBoiu3

http://teaching.variability.io/namur.html
http://www.cs.cmu.edu/~ckaestne/17708
http://teaching.variability.io/jku2016.html
https://insights.sei.cmu.edu/library/introduction-to-software-product-lines-course
https://greg4cr.github.io/courses/fall22tda594
https://teaching.variability.io
https://doi.org/10.5281/zenodo.14417094
https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines
https://creativecommons.org/licenses/by-sa/4.0/
https://www.youtube.com/playlist?list=PL4hJhdKDPIxha8So7muX2zfNUU8NBoiu3

Teach Variability! A Modern University Course on Software Product Lines VaMoS 2025, February 04–06, 2025, Rennes, France

• It invites fellow educators and researchers to reuse and adapt our
course or even make new contributions (e.g., new lectures).

• It allows practitioners to teach SPL concepts to industrial stake-
holders (e.g., domain experts) without any licensing issues.

• It holds us and other contributors publicly accountable, creating
an incentive to commit high-quality and up-to-date material.
Moreover, each of these benefits contributes to goal G1 by either

making our course more attractive to some party in Figure 1 or
establishing accountability and, thus, confidence in the material.

G3 Address a Broad Audience Preparing new teaching material
is a difficult and time-consuming endeavor. Consequently, it makes
sense for us to try to address a broad audience of students, so our
course is widely applicable in practice. Thus, we aim to:
• choose a course format that fits a typical university schedule [2]
• apply modern teaching methods that attract students [18]
• architect an inductive course structure that emphasizes the natu-
ral discovery of concepts over their definitions [57]
We believe these efforts will help to attract educators, making it

way easier to teach SPLs at more universities (as per G2).

G4 Focus on Practical Skills SPLs have many facets [2, 59], not
all of which can be realistically taught in a single university course.
Consequently, we must choose a particular subset of topics and
skills that is both likely to be relevant for training new researchers
and practitioners (as per G1) and to appeal to students (as per G3).
For this reason, we opt for a practical, hands-on approach and focus
mostly on topics like modeling, implementation, and analysis of
variability. In particular, we put less emphasis on management and
organizational topics. While these topics are no less important, they
are also more abstract and difficult to grasp for students, which
typically have limited industrial experience. Overall, we therefore
aim to create a rather technical course that can be accompanied by
a suitable exercise class with, for example, programming tasks.

Building on goalG1–G4, we describe and justify the high-level (cf.
Section 3) and low-level (cf. Section 4) design of our course.

3 Course Architecture
Initially, the authors of this paper spent≈ 11months only discussing
the course format and structure, and which SPL topics to cover in
which depth. In the following, we briefly describe the relevant
design choices we made, which concern our course as a whole.

3.1 Format
Our course consists of 12 English lectures (L1–12), with ≈ 40 slides
each. This format fits a typical weekly (under-)graduate university
course of 3–4 months with 90-minute lectures. We create an entire
series of lectures to close the existing gap in complete, open courses
on SPLs (cf. Table 1).We use the English language and an established
course format for improved applicability (G3). The schedule with
12 lectures leaves enough room for guest lectures (G1). For example,
we typically host one additional lecture with conference talks as
well as an industrial guest lecture (e.g., by pure-systems GmbH).

3.2 Literature Review
Similar to other courses [2] (e.g., those shown in Table 1), we loosely
base our lecture slides on existing books. We do this for several

reasons: First, it saves time and effort, as several books already
prepare a curriculum with a well-laid-out common thread. Second,
given such a curriculum, we can decide more easily where to deviate
from it (cf. Section 4), for example to include recent research or
correct outdated information (G1). Third, referring to books gives
interested students material for further reading (G1).

While searching for appropriate literature (as perG4), we became
aware that a comprehensive overview of educational books on SPLs
is missing. Moreover, we are not aware of any detailed review of
topics that are relevant for teaching SPLs, and how books cover
these topics. To fill this gap, we perform a literature review of
influential (i.e., well-known and often-cited) books on SPLs. We
also review relevant SPL topics and the degree to which each book
covers them. We show both the methodology for this review and
its results in Table 2. A more in-depth version is available in our
online appendix,7 which also includes justifications and a list of
excluded books. Our literature review serves as a first reference
to help educators (such as ourselves) choose suitable literature for
new courses and pointers for further reading.

For our course, we choose Apel et al. [7] and Meinicke et al. [50]
as accompanying literature, due to several reasons: First, both books
are well-known and comparably up-to-date (G1) as well as mostly
oriented towards practical topics (G3). Second, they include both
theoretical [7] and practical [50] exercises (G3) and are likely acces-
sible to university students (e.g., via SpringerLink). The practical
exercises, in particular, rely on the tool FeatureIDE [38], which is
free and open-source software (G2) and already used in teaching [2].
Third, our literature review in Table 2 shows that of all considered
books, the chosen two focus most on our topics of interest, such as
variability modeling, implementation, and analysis (G4).

3.3 Structure
We divide our course into three parts, which we show on the top
in Figure 2. In Part I (L1–3), we begin with ad-hoc approaches
for software variability, which many students will be intuitively
familiar with. Then, in Part II (L4–8), we introduce feature model-
ing [7, 34], implementation techniques [7, 64], and the development
process [7, 56]. Finally, we discuss measures for quality assurance
and advanced topics in Part III (L9–12). This structure is inductive
(i.e., it builds concepts up from basic principles, G3) and empha-
sizes practicality (G4). In particular, we introduce feature models
(in L4) and the SPL development process (in L8) much later than
Apel et al. [7], when students already know how to apply them.

4 Lecture Design
After settling on the course architecture (cf. Section 3), we spent four
months creating initial versions of most lectures. Below, we discuss
the detailed lecture design, relating it to our goals (cf. Section 2).

4.1 Structure
We divide each lecture into three blocks, which we show exemplary
for the introduction (L1) on the bottom in Figure 2. Each block is
designed to take 20–25 minutes of lecturing time, followed by an
optional interaction with the audience of 5–10 minutes. In each
block, we describe and discuss one distinct and cohesive topic re-
lated to SPLs. This discussion is then concluded by a summary of

VaMoS 2025, February 04–06, 2025, Rennes, France E. Kuiter et al.

Table 2: Literature review of existing books and courses on SPLs, which topics they cover, and how they compare to our course.

Books Courses

Topics

This list of topics is based on the books’ and courses’ tables
of contents, the session titles of recent conferences (SPLC [8],
VaMoS [35], and FOSD), and also on related work [2, 59].
In line with our practical focus (G4), we break down topics
related to modeling, implementation, and analysis in more
detail and put less emphasis on management issues. C

za
rn
ec
ki

an
d
Ei
se
-

ne
ck
er

[2
3]

Bo
sc
h
[1
5]

C
le
m
en
ts

an
d

N
or
th
ro
p
[2
0]

G
om

aa
[3
1]

Po
hl
,B

öc
kl
e,
an
d
va
n
de
r

Li
nd

en
[5
6]

va
n
de
rL

in
de
n,

Sc
hm

id
an
d
Ro

m
m
es

[6
7]

A
pe
l,
Ba

to
ry
,K

äs
tn
er
,

an
d
Sa
ak
e
[7
]

M
ei
ni
ck
e,
Th

üm
,

Sc
hr
öt
er
,B

en
du

hn
,L

ei
ch
,

an
d
Sa
ak
e
[5
0]

A
ch
er

an
d
H
ey
m
an
s1

Kä
st
ne
ra

nd
A
pe
l2

Lo
pe
z-
H
er
re
jo
n
an
d
Ra

-
bi
se
r3

D
on

oh
oe

an
d
N
or
th
ro
p4

G
ay

an
d
Be

rg
er

5

Th
üm

,K
eh
re
r,
an
d

Ku
ite

r7

Fundamentals
Motivation, Goals, Context, History
SPL Definition, Delineation G# G#
SPL Engineering # G#

Modeling and Configuration
Feature Modeling # G# G# G# #
Decision Modeling # # # # # G# # # # G# # # #
Product Configuration # G# G#
Requirements Engineering # G# # # G# G# G#
Scoping, Variability Reduction G# # G# G# G#
Variability-Model Representations, Transformations # # # G# # # G# G# G# # G#
Model-Driven Engineering, Domain-Specific Languages # # G# G# G# # # G# # # #

Design and Implementation
Product Derivation, Automation, Generative Programming G# G# # G# G# G#
Feature Mapping, Traceability, Location # # # G# G# G# G# G# G# G# # G# G#
Runtime Variability, Design Patterns G# G# G# G# G# G# G#
Clone-and-Own, Version Control Systems # G# G# # # # G# G# # G# # #
Preprocessors G# # # G# G# G# G# G# G#
Build Systems # # # # G# G# G# # # G# # # G#
Components, Services G# G# G# G# G# G# # G# # G#
Frameworks, Plug-ins G# # # G# G# G# #
Feature-Oriented Programming # # # # # # #
Aspect-Oriented Programming, Cross-Cutting Concerns G# G# # G# # # G#

Quality Assurance
Feature-Model Analysis, Satisfiability Solving, Model Counting # # # # # # G# G# G# G# # G#
Feature-Mapping Analysis, Presence Conditions # # # # # # # # # #
Solution-Space Analysis # # # # # # G# # # # #
Feature Interactions # # # # # # G# # # # G#
Testing, Sampling G# G# G# G# G# G# G# G# # G#
Formal Methods, Theory, Algebra # # # # # G# # G# # # # # #
Validation, Certification, Specification G# G# # # G# # # G# # G# # # # #

Management
Process Models, Development Life Cycle G# G# G# G# G# G# G#
Organization, Roles, Business Cases # # # # # # # # #
Financing, Economics, Cost Estimation # G# # # # # # # # #
Human Factors, Cognition, Knowledge # # G# # # # # # # # # G# # #

Transfer
Adoption Strategies # G# # # G# #
Reengineering, Reverse Engineering, Refactoring G# # # G# # G# G# G# G# G# # # G#
Evolution, Maintenance # # G# G# G# # G# # G#
Release, Deployment, Operation # G# G# G# # G# # # # # # G# # #
Case Studies, Industrial Applications G# G# G# G# G# G# G#
Tool Support # # G# # # # G# #
Exercises, Instructions, Training # # # G# # G#

Miscellaneous
Multi SPLs, Software Ecosystems # # # # G# # G# # # G# # # # #
Dynamic SPLs, Adaptive Systems G# # # # # # G# # # # # # # G#
Computational Complexity, Limits, Combinatorial Explosion # # # # G# G# # # G# G# G# # #

Not or barely mentioned G# Discussed partially or superficially Discussed in breadth or depth

Remark on Included Books We aim to include books that are concerned with SPLs, well-known in research or industry, and suitable for teaching (e.g., aimed at students or
creators of educational resources). To this end, we consider SPL books in our inventory and our literature databases. In addition, we search Google, Amazon, eBay, and Google
Scholar for the phrases: "software␣" ("product␣line" | "variability") "␣book". We only include English books with available full-text. We exclude conference proceedings,
dissertations, edited anthologies or collections, and books with less than 100 citations (according to Google Scholar). A more detailed version is available in our online appendix.7

Remark on Included Courses We include all publicly available complete English courses on SPLs that we identify in Table 1.

Teach Variability! A Modern University Course on Software Product Lines VaMoS 2025, February 04–06, 2025, Rennes, France

Part I: Ad-Hoc Approaches for Variability

1. Introduction

2. Runtime Variability and Design Patterns

3. Compile-Time Variability with
Clone-and-Own

Part II: Modeling & Implementing Features

4. Feature Modeling

5. Conditional Compilation

6. Modular Features

7. Languages for Features

8. Development Process

Part III: Quality Assurance and Outlook

9. Feature Interactions

10. Product-Line Analyses

11. Product-Line Testing

12. Evolution and Maintenance

1a. Introduction to Product Lines
Handcrafting and Customization

Mass Production

Mass Customization

Recap: The Software Life Cycle

Features and Products of a Domain

Software Product Line

Product-Line Engineering

Summary

1b. Challenges of Product Lines
Software Clones

Feature Traceability

Automated Generation

Combinatorial Explosion

Feature Interactions

Continuing Change and Growth

Summary

1c. Course Organization
What You Should Know

What You Will Learn

What You Might Need

Credit for the Slides

Summary

FAQ

1. Introduction – Handout
Software Product Lines | Thomas Thüm, Timo Kehrer, Elias Kuiter | December 12, 2024

Figure 2: The first handout slide of our course on software product lines. We show the overall structure of our course on the top
(including all 12 lectures) and the structure of the individual lecture on the bottom (in this case, the introductory lecture).

learned lessons, selected opportunities for further reading (G1), and
an optional exercise that students can discuss in groups (G3). This
three-block structure has several advantages: First, it allows edu-
cators and students to easily navigate the lecture slides. Second, it
encourages students to pay attention, so they are able to participate
in the interaction. This interaction can then immediately reinforce
the learned concepts (G3). Third, it implements the sandwich prin-
ciple [33], which mandates alternating periods of active listening
and audience participation [16]. Recent evidence suggests that this
principle may improve students’ critical thinking and self-learning
ability as well as their satisfaction with the course [13, 17].

Inside each block, we typically follow an inductive structure (G3),
just as with the course at large. For instance, in L1a (cf. Figure 2), we
begin with examples of customization and slowly build up towards
the concept of an SPL, finally asking the students to name their
own examples of SPLs as part of the interaction. In addition, we
occasionally use recaps to recapitulate a previous lecture, and even
memes (e.g., XKCD comics)10 to keep students engaged (G3). Where
applicable, we also refer to relevant research publications in order
to substantiate our claims and animate students to make themselves
familiar with the literature (G1). Finally, we conclude each lecture
with a list of frequently asked questions (FAQs), which students
can use to check their grasp on each block’s topic.

4.2 Topics
In Table 2 (in the column our course on the far right), we give an
overview of the concrete topics that we cover in our course. To
facilitate a comparison with existing courses (cf. Table 1), we also
extend the literature review in Table 2with an overview of the topics
covered in these five courses. For instance, we can use this overview
for a deeper comparison of our course to the only other complete,
open course created by Gay and Berger.5 This comparison shows

10https://xkcd.com/

that our course covers both more topics (e.g., clone-and-own) and
several topics inmore depth or breadth (e.g., feature-model analysis).
Our extended review also shows how each course (including our
own) relates to the topics covered in influential books on SPLs (cf.
Section 3). As our course is loosely based on Apel et al. [7] and
Meinicke et al. [50], it mostly covers similar topics as these books.
However, we sometimes deviate from both books, for instance
by reordering, omitting, or adding topics. In the following, we
discuss some notable changes we make compared to these books,
focusing on practical challenges, running examples, added topics,
and original contributions.

Challenges In the first lecture (L1a), we name some promises of
SPLs (e.g., cost reduction). However, we also want to ensure that
students are immediately confronted with some potential draw-
backs of SPLs (G1). Thus, in L1b, we identify six practical challenges
of SPLs that relate to the topics of our course (G4). These challenges
include (cf. Figure 2): software clones (L2b,3,6a), feature traceability
(L2b,5c,6,7), automated generation (L2,5,6c,7), combinatorial explo-
sion (L2c,3a,4,10,11), feature interactions (L9,10a,11b), and continuing
change and growth (L8,12). Besides raising awareness, having these
challenges serves as a common thread throughout the course (G3).

Examples Analogously to these challenges, we use several run-
ning examples throughout the course (G3). Some of these examples
include: the graph product line (GPL) [47, 69] (L2,3,5–10), the Linux
kernel [65] (L1,5,8,10–12), and the PigNap case study [43] (L5). Be-
sides these examples from research and industry, we also contribute
our own examples for configuring databases (L4,10,11), ordering
waffles (L4), and assembling Lego minifigures (L1,10). Having such
recurring examples, students can easily recognize and use them,
for example to compare implementation techniques (G3).

Additions To account for recent research insights (G1), we in-
clude several practical topics in our course (G4), none of which is
covered by any book in Table 2. Some of these topics include: the

https://xkcd.com/

VaMoS 2025, February 04–06, 2025, Rennes, France E. Kuiter et al.

universal variability language (UVL) [27, 62] (L4b), model count-
ing and enumeration [29, 63] (L4c), the KConfig language and
tooling [22, 25, 53] (L5a), microservices [9, 55] (L6b), the promote-
pl development process [41] (L8c), combinatorial interaction test-
ing [4, 48] (L11b), and solution-space sampling [39, 68] (L11c).

Contributions Furthermore, we even make some original contri-
butions in the preparation of this course. For example, we compute
recent statistics regarding the evolution of the Linux kernel (L1b,8a),
we distinguish build systems for clone-and-own and conditional
compilation (L3c,5a), and we critically reflect on the complexity of
SPLs and feature models (L4c,10c) [42]. These contributions demon-
strate how education can positively interact with research (G1).

5 Adoption Challenges
In the following, we discuss several challenges related to the prac-
tical adoption of our course and how we address them.

Version Control We publish our course and its entire history [18]
in a public Git repository7 with > 600 commits by 7 contributors.
Besides easing backup and distribution, this ensures transparency
and, thus, accountability for any contributions made by us and
others (G2). Potential concerns can be raised in our issue tracker.

No Clone-and-Own We proactively create a new course on SPLs
to avoid typical issues of clone-and-own (cf. Section 1). To prevent
such issues in the future as well, we discourage diverging forks by
inviting other educators to integrate their contributions into the
main Git repository, for example with pull requests (G2). This is
possible because we create all our slides with LATEX, which allows
for textual diffs that are easy to review and merge (e.g., compared
to PowerPoint or similar visually oriented tools).

Customization By relying on LATEX, we can easily adapt our slides
to new universities (G2) and satisfy needs for further customization
(e.g., handout and dark-mode slides). To this end, we currently use
an annotative technique (i.e., the \ifuniversity{} command, a
LATEX equivalent of C’s #ifdef [44]). However, we almost exclu-
sively use this technique for customizing appearance in order to
avoid unneeded variability [1]. In particular, we deliberately avoid
creating an “SPL of SPL courses” [3], as this would introduce a sig-
nificant amount of additional complexity, which might be a source
for inconsistencies and obstacle for future extensions. Using this
technique, we adapted our course to six universities (cf. Table 3).

Underrepresented Topics With our course, we attempt to flesh
out the SPL baseline curriculum proposed by Acher et al. [2]. How-
ever, we are aware that some particular SPL topics (cf. Table 2) are
currently underrepresented in our curriculum. Management top-
ics, in particular, are covered much more extensively by Donohoe
and Northrop.4 We envision two ways to close such gaps: First,
educators with the respective expertise may contribute additional
guest lectures on these topics to our course. Second, we encourage
and look forward to other educators creating completely different
courses on SPLs, in which these topics may be covered in more
depth. To this end, the results of our literature review (cf. Table 2)
can be used to identify gaps for future books and courses on SPLs.

Exercise Sheets We currently accompany the lecture with an ex-
ercise class, in which students solve and discuss in-depth exercises

on each lecture’s topic. Because our primary focus is on the lecture
slides, we currently use work-in-progress exercise sheets based on
previous courses. In the near future, we aim to revise these exercise
sheets to match well with the lecture slides, so we can release them.

6 Preliminary Evaluation
Creating new lecture slides from scratch is not an easy task, but
getting them actually adopted in practice is yet another challenge. In
order to investigate whether our course is worth adopting, we aim
to evaluate how it is received by our students with regard to several
quality criteria. Thus, we seek to complement the discussion of our
intentions (cf. Section 2) and their implementation (cf. Section 3
and 4) with real feedback from students. In particular, we aim to
address the following research questions:
RQ1 How well do students receive our course in general?
RQ2 How well do students receive our course compared to . . .

RQ2.1 . . . other courses at the same faculty?
RQ2.2 . . . a previous course on SPLs at the same faculty?

Performing comprehensive, meaningful evaluations of university
courses is known to be methodologically challenging [28, 37, 49].
Nonetheless, we collect feedback from several student evaluations
of teaching (SETs) [32], which are conducted at many universities.
We believe this feedback is a valuable first step towards assessing
the quality of our course and whether it is suitable for adoption.

6.1 RQ1: General Reception
First, we aim to determine how students receive our course in gen-
eral (e.g., aspects they like or dislike, and room for improvement).

Methodology Over the last two years, we have conducted six
SETs at five universities, in which we collected anonymized feed-
back from 64 students. The feedback is both quantitative and quali-
tative, summarized in Table 3 and 4, respectively. For quantitative
feedback, all universities use some kind of Likert scale to indicate
(dis-)agreement. Still, we need to unify the questionnaires used by
different universities. Thus, we aggregate relevant questions into a
set of recurring quality criteria, and we normalize all scores to the
same scale (details indicated in Table 3). We leave gaps in Table 3
when a SET does not cover a given quality criterion at all.

Results The results we show for RQ1 in Table 3 indicate scores
from 78.3 to 97.0 points for course-related quality criteria. In the
mean (computed over all universities), students rate the structure
of our course with 88.5, its quality with 88.9, and its difficulty and
pacing with 91.7 out of 100 points. As for the self-assessment of
our students, they rate their own motivation for the course with
69.3 points, their gain in knowledge with 83.7, and their overall
satisfaction with 85.4 points in the mean. To put these numbers
into context, we also show aggregated qualitative student feedback
in Table 4, which reveals several points of praise and criticism.

Discussion The feedback suggests that our course was well-
received by the majority of students. In particular, students seem
to appreciate the structure of our course (i.e., as outlined in Sec-
tion 3 and 4), its material (i.e., the lecture slides and exercise sheets),
and its difficulty and pacing (i.e., it is not too hard/fast and not too
easy/slow). However, it is of course not possible to satisfy everyone—
for instance, there will always be students who are challenged too

Teach Variability! A Modern University Course on Software Product Lines VaMoS 2025, February 04–06, 2025, Rennes, France

Table 3: Student feedback from Likert-scale questions (RQ1, RQ2.1, RQ2.2).

University of Bern Ulm University Harz Magdeburg Paderborn Aggregated

WT 2022/23 WT 2023/24 ST 2023 ST 2023 WT 2023/24 ST 2024 Total or Mean

Quality Criteria RQ1 RQ2.1 RQ1 RQ2.1 RQ1 RQ2.1 RQ2.2 RQ1 RQ1 RQ2.1 RQ1 RQ1 RQ2.1

Participants 8 4110 8 2608 13 856 9 8 11 471 16 64 8045
Course
Structure 90 76 +19% .00∗ 90 80 +13% .03∗ 95 81 +17% .00∗ 91 +4% .37 88 80 +10% .24 80 89 79 +15%
Material 88 73 +20% .03∗ 90 80 +13% .10 93 80 +17% .00∗ 85 +9% .25 85 89 77 +17%
Difficulty, Pacing 97 82 +18% .11 97 91 +6% .01∗ 91 78 +17% .01∗ 87 +5% .46 78 75 +4% .67 95 92 82 +11%

Self-Assessment
Motivation 75 68 +11% .43 79 70 +12% .08 86 77 +12% .05 86 +0% .99 44 63 73 −14% .19 69 72 +5%
Gain in Knowledge 86 74 +16% .05∗ 89 77 +16% .02∗ 91 74 +23% .00∗ 90 +2% .80 73 70 +5% .65 79 84 74 +15%
Satisfaction 94 78 +21% .00∗ 94 82 +14% .02∗ 96 80 +20% .00∗ 90 +7% .27 75 73 70 +5% .60 80 85 77 +15%

Harz University of Applied Studies (Wernigerode) University of Magdeburg Paderborn University TU Braunschweig (not yet evaluated)
WT Winter term ST Summer term Score Scale 0 = worst, 100 = best +𝑥% −𝑥% Comparison relative to RQ1 𝑝 ∗ Statistically significant (𝑝 < 0.05)

Quantitative feedback aggregated from six questionnaires across five universities with 64 student participants in total. We exclude one unevaluated and three ongoing iterations of
our course. We identify six key categories of quality criteria that most questionnaires cover. We calculate each score as the mean of the constituent questions, normalized to a scale
from 0 to 100 for easy comparison. We omit questions that only relate to the exercises and the performance of lecturers. A more detailed version is available in our online appendix.7

Table 4: Student feedback from open questions (RQ1).

Praise

Detailed course structure with a clear overview and a common thread
Many images with good visualizations, appropriate information depth
Many practical, recurring examples
Interactions, FAQs, opportunities for asking questions and discussions
Video recordings, dark-mode slides, guest lectures

Criticism

Having English slides was challenging for some non-native speakers
Too theoretical for some students, too practical and coding-focused for others
Some lectures are too long (e.g., feature modeling) and too fast towards the end

Qualitative feedback aggregated from the same responses that we consider in Table 3.

much or too little by the material. Notably, the student’s own moti-
vation seems comparably low in the mean, which is due to the low
rating at the Harz University of Applied Studies. This is a vocational
university with less emphasis on research, which might explain the
lower self-assessment at this university. Another point of criticism
we aim to address is that, despite the good overall pacing, some
individual lectures have too much content and could be tightened.

6.2 RQ2.1: Comparison to Faculty
While RQ1 indicates generally positive feedback, the results for
our course become more meaningful when we compare them to a
suitable baseline. For RQ2.1, we aim to compare our course to other
courses that have been held at the same university.

Methodology Four of the six SETs we conducted (i.e., in Bern,
Ulm, and Magdeburg) also include data on many other courses
that have been evaluated at the same faculty. By aggregating and
normalizing the other courses’ scores analogously to RQ1, we can
compare them to our course and assess where it performs better or
worse. We show these results in Table 3 in the column for RQ2.1,
including the differences to our course’s results as percentages. To
calculate these percentages, we only consider the universities for
which data on other courses is available. This way, the all-university

percentage in the last column of Table 3 is computed correctly, al-
though the absolute mean values for RQ1 and RQ2.1 are not directly
comparable. To test the differences’ statistical significance, we per-
form a two-tailedWelch’s 𝑡-test with a significance level of 𝛼 = 0.05.
This test is more robust than Student’s 𝑡-test for unequal variances
and unequal sample sizes, which apply here. We indicate p-values
and significant results (∗) in Table 3 and omit variances for brevity.

Results The results for RQ2.1 show that, in the mean, students
rate our course as better than other courses at the same faculty
in almost all quality criteria. In particular, our course scores 11%
to 17% more points than other courses in course-related quality
criteria in the mean. Regarding self-assessment, we find that, in
the mean, students award our course 5% to 15% more points than
other courses. Only at the University of Magdeburg do we find a
mean reduction in motivation by 14% compared to other courses.
Regarding statistical significance, we find that for almost all quality
criteria, the differences are significant for at least two distinct uni-
versities. Again, the students’ motivation is the single exception,
having no statistically significant differences (0.05 ≤ 𝑝 ≤ 0.43).

Discussion These results suggest that students generally regard
our course as better than a typical course at the same faculty. While
we consider this a very positive result, we must interpret it carefully.
In particular, not all differences are statistically significant, and for
these we cannot completely rule out random effects. However, for
most quality criteria, we find significant differences for at least
two distinct universities, which is promising. The single exception
is student motivation, which does not seem to significantly differ
from other courses at the same faculty.

6.3 RQ2.2: Comparison to Previous Course
Finally, as an alternative baseline, we aim to compare our course to
a previous course on SPLs that has been held at the same faculty.

Methodology At two of the five universities considered in Table 3
(i.e., Ulm and Magdeburg), another course on SPLs (𝐶old) used to be
taught before our course (𝐶new) was introduced. The course𝐶old had
completely different, unpublished slides, which were adapted and

VaMoS 2025, February 04–06, 2025, Rennes, France E. Kuiter et al.

slightly updated from year to year with clone-and-own. To reduce
the influence of confounding factors, we aim to only compare an
SET of𝐶new to an SET of𝐶old if both courses were held at the same
university, by the same lecturer, and in a similar timeframe (i.e.,
within two years). Unfortunately, these criteria exclude most SETs
we have for𝐶old , as they are simply too old to allow for meaningful
comparison. Thus, we can only compare 𝐶new (held in 2023) to
one iteration of 𝐶old (held in 2022) at Ulm University. We show the
results for this comparison in Table 3 in the column for RQ2.2. We
test for statistical significance analogous to RQ2.1.

Results The results for RQ2.2 show that, in the mean, students
at Ulm University rate 𝐶new slightly better than 𝐶old . In particu-
lar, 𝐶new scores 4% to 9% more points than 𝐶old in course-related
quality criteria in the mean. Regarding self-assessment, these dif-
ferences range from 0% to 7% more points for 𝐶new . We find no
statistically significant differences between 𝐶old and 𝐶new for any
quality criterion (0.25 ≤ 𝑝 ≤ 0.99).

Discussion Unfortunately, the results for RQ2.2 remain inconclu-
sive due to a lack of statistical significance, which maybe could
have been reached with more regular SETs before introducing our
course. Nonetheless, they do not contradict the favorable results
we found for RQ1 and RQ2.1, which is reassuring.

6.4 Threats to Validity
Evaluations of teaching material can be challenging due to a variety
of biases and confounding factors [28, 37, 49]. Thus, we aim to
openly discuss potential threats to the validity of our conclusions.

Internal Validity Several biases and confounding factors might
distort the results of our SETs compared to reality, some of which
we discuss in the following. First, only students with very positive
or negative experiences may choose to fill out questionnaires. To
avoid this issue, we compare our course to other courses at the same
faculty (RQ2.1), which would suffer from the same bias. Second, stu-
dents might simply like the topic and would also rate any other SPL
course better than faculty average. We partially mitigate this by
comparing our course to a previous course on SPLs (RQ2.2). Third,
students might be impacted in their answers by the lecturer’s per-
formance (e.g., are they experienced/enthusiastic?), exercise class
(e.g., is it too labor-intensive/strict?) and other external factors not
related to the course (e.g., organizational structures). We reduce this
threat by collecting SETs over several distinct lecturers at multiple
universities. To improve comparability, we unify the questionnaires
from different universities and aggregate their questions into rele-
vant quality criteria. Also, we ignore questions that only relate to
teaching personnel and exercise classes. This way, we can focus on
the actual course material and the students’ self-assessment.

External Validity The external validity of our conclusions might
be limited by the size of our dataset (e.g., regarding the number of
universities, SETs, and participants). While more evidence is always
welcome, our dataset already demonstrates how our course can be
successfully introduced to new universities, which is the main goal
of our evaluation. For the comparison to other courses at the same
faculty (RQ2.1), we only have data for four universities. However,
at these universities, a total of 8045 students participated in SETs,
which makes this a suitable baseline for comparison nonetheless.

7 Related Work
To the best of our knowledge, we are the first to create a new
course on SPLs from scratch, describe our approach in detail, and
publish it as open educational resources. We are also not aware of
another attempt at evaluating a course on SPLs by collecting both
quantitative and qualitative feedback from SETs. However, there are
several case studies and experience reports on teaching SPLs [18,
21, 46, 52, 58, 61] published either at CSEE&T [14] or the SPLTea
workshop [3]. Some of these publications only discuss course goals
superficially [21, 46, 52, 58], do not discuss a complete course [21, 52,
58], or target other audiences than computer science students [52,
61]. Other publications have a different focus from ours, for example
on course evolution [18, 21] or specific pedagogical approaches [18,
61]. In particular, none of these publications review the literature
on SPLs or perform a quantitative evaluation, as we do.

Acher et al. [2] performed two surveys and aworkshop to capture
a snapshot of current practices and challenges in teaching SPLs.
In contrast to our work, they do not focus on a specific course.
Our work can be regarded as a continuation of their work, which
identified the need for a baseline curriculum, such as ours.

8 Conclusion
In this paper, we shared our experiences in architecting and de-
signing a new university course on SPLs from scratch. We publish
our course in form of open educational resources. Thus, we hope
to ignite a collaborative effort to create and continuously improve
SPL teaching material. Ideally, this will contribute to SPL education
growing more mature along with research and industry.

In the future, we aim to add new lectures on underrepresented
topics, release exercise sheets, and introduce an open call for scien-
tific talks to attract guest lecturers and, thus, potentially extend the
network of universities participating in this project. We also intend
to regularly reevaluate our course and consider new feedback.

Acknowledgments
This project would not have been possible without the work and
support of several of our colleagues: First, we want to thank Sebas-
tian Krieter, Paul Maximilian Bittner, Chico Sundermann, Benno
Hölz, and Florian Sihler for their contributions to the lecture slides
and slide template. Second, we want to thank Sandra Greiner, Chico,
Paul, and Sebastian for their contributions to the exercise sheets,
which we hope to publicly release in the future. Third, we want
to thank Gunter Saake, Thomas Leich, Sandy Grawe, and Roman
Macháček for their organizational support throughout this project.
Fourth, we want to thank our students for participating in the
course and giving valuable feedback. Finally, special thanks go out
to Sandra, who was very involved in discussing and developing
new and improved exercises for our course.

Student Testimonials “I have not heard the term SPL before the
course at all, and I think I have acquired a pretty good under-
standing of it now.” — “The slides were of good quality, the lecture
always interactive and never boring.” — “It’s really a pity that not
more students have attended this high quality lecture, but I would
recommend it to any other computer science student.”

Teach Variability! A Modern University Course on Software Product Lines VaMoS 2025, February 04–06, 2025, Rennes, France

References
[1] Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina, Xhevahire Tërnava, and

Olivier Zendra. 2023. A Call for Removing Variability. In Proc. Int’l Working Conf.
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 82–84.

[2] Mathieu Acher, Roberto E. Lopez-Herrejon, and Rick Rabiser. 2017. Teaching
Software Product Lines: A Snapshot of Current Practices and Challenges. ACM
Trans. on Computing Education (TOCE) 18, 1, Article 2 (2017), 2:1–2:31 pages.

[3] Mathieu Acher, Rick Rabiser, and Roberto E. Lopez-Herrejon (Eds.). 2019. Fourth
International Workshop on Software Product Line Teaching (SPLTea 2019). ACM.

[4] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter
Saake. 2016. IncLing: Efficient Product-line Testing Using Incremental Pairwise
Sampling. In Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE). ACM, 144–155.

[5] Vander Alves, Nan Niu, Carina Alves, and George Valença. 2010. Requirements
Engineering for Software Product Lines: A Systematic Literature Review. J.
Information and Software Technology (IST) 52, 8 (2010), 806–820.

[6] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering With a Virtual Platform. In Proc.
Int’l Conf. on Software Engineering (ICSE). ACM, 532–535.

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[8] Paolo Arcaini, Maurice H. ter Beek, Gilles Perrouin, Iris Reinhartz-Berger,
Miguel R. Luaces, Christa Schwanninger, Shaukat Ali, Mahsa Varshosaz, Angelo
Gargantini, Stefania Gnesi, Malte Lochau, Laura Semini, and Hironori Washizaki
(Eds.). 2023. SPLC ’23: Proceedings of the 27th ACM International Systems and
Software Product Line Conference. ACM.

[9] Wesley K. G. Assunção, Jacob Krüger, and Willian D. F. Mendonça. 2020. Vari-
ability Management Meets Microservices: Six Challenges of Re-Engineering
Microservice-Based Webshops. In Proc. Int’l Systems and Software Product Line
Conf. (SPLC). ACM, Article 22.

[10] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In Proc. Int’l Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 7:1–7:8.

[11] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. on Software Engineering (TSE) 39, 12 (2013), 1611–
1640.

[12] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2010. Variability Modeling in the Real: A Perspective From the Oper-
ating Systems Domain. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 73–82.

[13] Anna Bock, Bianca Idzko-Siekermann, Martin Lemos, Kristian Kniha,
Stephan Christian Möhlhenrich, Florian Peters, Frank Hölzle, and Ali Modabber.
2020. The Sandwich Principle: Assessing the Didactic Effect in Lectures on “Cleft
Lips and Palates”. BMC medical education 20 (2020), 1–7.

[14] Andreas Bollin, Ivana Bosnić, Jennifer Brings, Marian Daun, and Meenakshi
Manjunath (Eds.). 2024. 36th International Conference on Software Engineering
Education and Training (CSEE&T). IEEE. https://doi.org/10.1109/CSEET62301.
2024.10663010

[15] Jan Bosch. 2000. Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. Pearson Education.

[16] Diane M. Bunce, Elizabeth A. Flens, and Kelly Y. Neiles. 2010. How Long Can
Students Pay Attention in Class? A Study of Student Attention Decline Using
Clickers. Journal of Chemical Education 87, 12 (2010), 1438–1443. https://doi.org/
10.1021/ed100409p

[17] Xiaoyan Cai, Mingmei Peng, Jieying Qin, Kebing Zhou, Zhiying Li, Shuai Yang,
and Fengxia Yan. 2022. Sandwich Teaching Improved Students’ Critical Thinking,
Self-Learning Ability, And Course Experience in the Community Nursing Course:
A Quasi-Experimental Study. Frontiers in Psychology 13 (2022), 11 pages. https:
//doi.org/10.3389/fpsyg.2022.957652

[18] Jaime Chavarriaga, Rubby Casallas, Carlos Parra, Martha Cecilia Henao-Mejía,
and Carlos Ricardo Calle-Archila. 2019. Nine Years of Courses on Software
Product Lines at Universidad de los Andes, Colombia. In Proc. Int’l Workshop on
Software Product Line Teaching (SPLTea). ACM, 130–133.

[19] Lianping Chen and Muhammad Ali Babar. 2011. A Systematic Review of Eval-
uation of Variability Management Approaches in Software Product Lines. J.
Information and Software Technology (IST) 53, 4 (2011), 344–362.

[20] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[21] Philippe Collet, Sébastien Mosser, Simon Urli, Mireille Blay-Fornarino, and
Philippe Lahire. 2014. Experiences in Teaching Variability Modeling and Model-
Driven Generative Techniques. In Proc. Int’l Workshop on Software Product Line
Teaching (SPLTea). ACM, 26—-29.

[22] The Kernel Development Community. 2018. KConfig Language. Website: https:
//www.kernel.org/doc/html/latest/kbuild/kconfig-language.html. Accessed: 2024-
01-30.

[23] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley.

[24] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In Proc. Europ. Conf. on Software Maintenance and Reengi-
neering (CSMR). IEEE, 25–34.

[25] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the
KConfig Semantics and its Analysis Tools. In Proc. Int’l Conf. on Generative
Programming: Concepts & Experiences (GPCE). ACM, 45–54.

[26] Emelie Engström and Per Runeson. 2011. Software Product Line Testing - A
Systematic Mapping Study. J. Information and Software Technology (IST) 53 (2011),
2–13. Issue 1.

[27] Kevin Feichtinger, Chico Sundermann, Thomas Thüm, and Rick Rabiser. 2022.
It’s Your Loss: Classifying Information Loss During Variability Model Roundtrip
Transformations. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 67–78.

[28] Daniela Feistauer and Tobias Richter. 2017. How Reliable Are Students’ Evalu-
ations of Teaching Quality? A Variance Components Approach. Assessment &
Evaluation in Higher Education 42, 8 (2017), 1263–1279.

[29] José A Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian Vidal, Benoit
Baudry, and David Benavides. 2016. Exploiting the Enumeration of All Feature
Model Configurations: A New Perspective With Distributed Computing. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC). ACM, 74–78.

[30] Matthias Galster, DannyWeyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou.
2013. Variability in Software Systems-a Systematic Literature Review. IEEE Trans.
on Software Engineering (TSE) 40, 3 (2013), 282–306.

[31] Hassan Gomaa. 2004. Designing Software Product Lines With UML: From Use Cases
to Pattern-Based Software Architectures. Addison-Wesley.

[32] Robert L Isaacson, Wilbert J McKeachie, John E Milholland, Yi G Lin, Margaret
Hofeller, and Karl L Zinn. 1964. Dimensions of Student Evaluations of Teaching.
Journal of Educational Psychology 55, 6 (1964), 344.

[33] Martina Kadmon, Veronika Strittmatter-Haubold, Rainer Greifeneder, Fadja
Ehlail, and Maria Lammerding-Köppel. 2008. The Sandwich Principle – Introduc-
tion to Learner-centred Teaching/Learning Methods in Medicine. Zeitschrift für
Evidenz, Fortbildung und Qualität im Gesundheitswesen 102, 10 (2008), 628–633.
https://doi.org/10.1016/j.zefq.2008.11.018 Professionalisierung der medizinischen
Ausbildung.

[34] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[35] Timo Kehrer, Marianne Huchard, Leopoldo Teixeira, and Christian Birchler (Eds.).
2024. VaMoS ’24: Proceedings of the 18th International Working Conference on
Variability Modelling of Software-Intensive Systems. ACM.

[36] Peter Knauber, Jesús Bermejo Muñoz, Günter Böckle, Julio Cesar Sampaio
do Prado Leite, Frank van der Linden, LindaNorthrop,Michael Stark, andDavidM.
Weiss. 2001. Quantifying Product Line Benefits. In Proc. Int’l Workshop on Software
Product-Family Engineering (PFE). Springer, 155–163.

[37] Rebecca J. Kreitzer and Jennie Sweet-Cushman. 2021. Evaluating Student Eval-
uations of Teaching: A Review of Measurement and Equity Bias in Sets and
Recommendations for Ethical Reform. Journal of Academic Ethics 20, 1 (2021),
73–84. https://doi.org/10.1007/s10805-021-09400-w

[38] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher
Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE:
Empowering Third-Party Developers. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 42–45.

[39] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Sebastian Ruland, Malte
Lochau, Gunter Saake, and Thomas Leich. 2022. T-Wise Presence Condition Cover-
age and Sampling for Configurable Systems. Technical Report arXiv:2205.15180.
Cornell University Library.

[40] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs of
Clone- and Platform-Oriented Software Reuse. In Proc. Europ. Software Engineer-
ing Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 432–444.

[41] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product Lines.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 1–12.

[42] Elias Kuiter, Tobias Heß, Chico Sundermann, Sebastian Krieter, Thomas Thüm,
and Gunter Saake. 2024. How Easy Is SAT-Based Analysis of a Feature Model?.
In Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, 149–151.

[43] Elias Kuiter, Jacob Krüger, and Gunter Saake. 2021. Iterative Development and
Changing Requirements: Drivers of Variability in an Industrial System for Veteri-
nary Anesthesia. In Proc. Int’l Workshop on Variability and Evolution of Software-
Intensive Systems (VariVolution). ACM, 113–122.

[44] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef Confirmed Harmful:
Promoting Understandable Software Variation. In Proc. Int’l Symposium on Visual

https://doi.org/10.1109/CSEET62301.2024.10663010
https://doi.org/10.1109/CSEET62301.2024.10663010
https://doi.org/10.1021/ed100409p
https://doi.org/10.1021/ed100409p
https://doi.org/10.3389/fpsyg.2022.957652
https://doi.org/10.3389/fpsyg.2022.957652
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://doi.org/10.1016/j.zefq.2008.11.018
https://doi.org/10.1007/s10805-021-09400-w

VaMoS 2025, February 04–06, 2025, Rennes, France E. Kuiter et al.

Languages and Human-Centric Computing (VL/HCC). IEEE, 143–150.
[45] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,
105–114.

[46] Liana Barachisio Lisboa, Leandro Marques Nascimento, Eduardo Santana de
Almeida, and Silvio Romero de Lemos Meira. 2008. A Case Study in Software
Product Lines: An Educational Experience. In Proc. IEEE Conf. on Software Engi-
neering Education and Training (CSEE&T). IEEE, 155–162.

[47] Roberto E. Lopez-Herrejon and Don Batory. 2001. A Standard Problem for
Evaluating Product-Line Methodologies. In Proc. Int’l Conf. on Generative and
Component-Based Software Engineering (GCSE). Springer, 10–24.

[48] Roberto E. Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Aalexander Egyed.
2015. A First Systematic Mapping Study on Combinatorial Interaction Testing for
Software Product Lines. In Proc. Int’l Workshop on Combinatorial Testing (IWCT).
IEEE, 1–10.

[49] Mark Davies Mark Shevlin, Philip Banyard and Mark Griffiths. 2000. The Validity
of Student Evaluation of Teaching in Higher Education: Love Me, Love My
Lectures? Assessment & Evaluation in Higher Education 25, 4 (2000), 397–405.
https://doi.org/10.1080/713611436

[50] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017.Mastering Software VariabilityWith FeatureIDE. Springer.

[51] Tomohiro Nagashima and Susan Harch. 2021. Motivating Factors Among Uni-
versity Faculty for Adopting Open Educational Resources: Incentives Matter.
Journal of Interactive Media in Education 2021, 1 (2021), 10 pages.

[52] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda. 2018. Teaching Software
Product Lines as a Paradigm to Engineers: An Experience Report in Education
Programs and Seminars for Senior Engineers in Japan. In Proc. Int’l Workshop on
Software Product Line Teaching (SPLTea). ACM, 46–47.

[53] Jeho Oh, Necip Fazıl Yıldıran, Julian Braha, and Paul Gazzillo. 2021. Finding
Broken Linux Configuration Specifications by Statically Analyzing the Kconfig
Language. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 893–905.

[54] Juliana Alves Pereira, Kattiana Constantino, and Eduardo Figueiredo. 2015. A
Systematic Literature Review of Software Product Line Management Tools. In
Proc. Int’l Conf. on Software Reuse (ICSR). Springer, 73–89.

[55] Marcus Pinnecke. 2021. Product-Lining the Elinvar Wealthtech Microservice
Platform. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM,
60–68.

[56] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[57] Michael J. Prince and Richard M. Felder. 2006. Inductive Teaching and Learning
Methods: Definitions, Comparisons, And Research Bases. Journal of Engineering
Education 95, 2 (2006), 123–138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.
x

[58] Clément Quinton. 2018. Giving Students a Glimpse of the SPL Lifecycle in Six
Hours: Challenge Accepted!. In Proc. Int’l Workshop on Software Product Line
Teaching (SPLTea). ACM, 42–43.

[59] Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster,
Iris Groher, and Danny Weyns. 2018. A Study and Comparison of Industrial vs.
Academic Software Product Line Research Published at SPLC. (2018), 14–24.

[60] Zaynab Sabagh and Alenoush Saroyan. 2014. Professors’ Perceived Barriers
and Incentives for Teaching Improvement. International Education Research 2, 3
(2014), 18–40.

[61] Christoph Seidl and Irena Domachowska. 2014. Teaching Variability Engineering
to Cognitive Psychologists. In Proc. Int’l Workshop on Software Product Line
Teaching (SPLTea). ACM, 16—-23.

[62] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thüm. 2021. Yet Another Textual Variability Language? A Community
Effort Towards a Unified Language. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 136–147.

[63] Chico Sundermann, Tobias Heß, Michael Nieke, Paul Maximilian Bittner, Jef-
frey M. Young, Thomas Thüm, and Ina Schaefer. 2023. Evaluating State-of-the-Art
#SAT Solvers on Industrial Configuration Spaces. Empirical Software Engineering
(EMSE) 28, 29 (2023), 38.

[64] Mikael Svahnberg, Jilles vanGurp, and Jan Bosch. 2005. A Taxonomy of Variability
Realization Techniques: Research Articles. Software: Practice and Experience 35, 8
(2005), 705–754.

[65] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In Proc. Europ. Conf. on
Computer Systems (EuroSys). ACM, 47–60.

[66] Scientific United Nations Educational and Cultural Organization (UNESCO). 2019.
Recommendation on Open Educational Resources (OER). https://www.unesco.
org/en/legal-affairs/recommendation-open-educational-resources-oer. Ac-
cessed: 2024-03-18.

[67] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer.

[68] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling
for Software Product Lines. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 1–13.

[69] Hillel Wayne. 2024. The Hunt for the Missing Data Type. https://www.
hillelwayne.com/post/graph-types. Accessed: 2024-03-22.

https://doi.org/10.1080/713611436
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://www.hillelwayne.com/post/graph-types
https://www.hillelwayne.com/post/graph-types

	Abstract
	1 Introduction
	2 Course Scope and Goals
	3 Course Architecture
	3.1 Format
	3.2 Literature Review
	3.3 Structure

	4 Lecture Design
	4.1 Structure
	4.2 Topics

	5 Adoption Challenges
	6 Preliminary Evaluation
	6.1 RQ1: General Reception
	6.2 RQ2.1: Comparison to Faculty
	6.3 RQ2.2: Comparison to Previous Course
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

